
Pagina 1 di 236

Programmare giochi per Atari 2600 in Batari Basic

Versione 0.1 Dicembre 2025

By E-Paper Adventures

epaperadventures@gmail.com

mailto:epaperadventures@gmail.com

Pagina 2 di 236

Pagina 3 di 236

Sommario
Programmare giochi per Atari 2600 in Batari Basic ... 1

Introduzione .. 7

Le Icone speciali del manuale ... 8

Perchè questo manuale? .. 9

Ringraziamenti, Fonti e Licenza ... 9

Parte 1: Le Basi della Programmazione in Batari Basic ... 11

Capitolo 1 – I Tuoi Attrezzi .. 13

1.1 – Un Salto nel Tempo ... 13

1.2 – Il linguaggio Batari Basic .. 14

1.3 – Assemblare l’Officina .. 14

Capitolo 2 – Cominciamo a programmare! .. 20

2.1 – Lo Scheletro di un programma batari basic ... 20

2.2 – Anatomia dello Scheletro: Il Codice Spiegato ... 23

2.3 – Il Ciclo Infinito: Il Motore del Tempo ... 25

2.4 – I Registri del TIA: Il Cruscotto della Console ... 25

2.5 – Missione: “Hello, Player!” ... 25

2.6 – Il Codice Spiegato .. 26

2.7 – Il Sistema di Coordinate dell’Atari .. 27

Capitolo 3 – Muovere l’Eroe .. 29

3.1 – Ascoltare il Giocatore: Leggere il Joystick .. 29

3.2 – Primi Passi ... 29

3.3 – Il Ponte di Comando: Joystick e Interruttori della Console 31

3.4 – Clamping: I Muri Invisibili del Mondo ... 32

3.5 – Un Tocco di Stile: Riflettere lo Sprite con REFP0 .. 33

Capitolo 4 – Costruire lo Scenario: Il Playfield .. 37

4.1 – La Geometria del Playfield .. 37

4.2 – La Nostra Prima Stanza ... 38

4.3 – Davanti o Dietro? La Priorità con CTRLPF .. 39

4.4 – Scontrarsi con i Muri: La Funzione collision .. 40

4.5 – Muri Solidi con la Tecnica “Salva e Ripristina” .. 40

Capitolo 5 – La Voce della Console: Suoni ed Effetti Speciali .. 43

5.1 – L’Anatomia del Suono Atari .. 43

5.2 – Il “Sound Timer”: Creare Effetti Sonori a Tempo ... 43

Pagina 4 di 236

5.3 – L’Arte dell’Ordine: gosub e return .. 44

5.4 –Collisione con Suono .. 44

Capitolo 6 – Animazione a Frame Multipli .. 47

6.1 – Oltre lo Sprite Statico... 47

6.2 – La Tecnica del “Cartone Animato”: Alternare le Immagini con gosub................... 47

6.3 – Il Metronomo del Codice: Usare i Timer per il Ritmo .. 47

6.4 – Creare un’Animazione di Corsa... 48

Capitolo 7 – Progetto Guidato: “Fuga dal Castello Digitale” ... 52

7.1 – Fase 1: La Mappa del Tesoro – Pianificazione e Design ... 52

7.2 – Fase 2: Le Fondamenta – Mappa delle Variabili e Grafica 52

7.3 – Fase 3: La Macchina a Stati – Il Cervello del Gioco ... 53

7.4 – Fase 4: Dare Vita al Mondo – Input, IA, Suoni e Disegno 54

7.5 – Fase 5: Le Regole del Gioco – Collisioni e Logica ... 55

Parte 2: Tecniche Avanzate e Segreti dell'Hardware ... 59

Capitolo 8 – Alias, palla e missili ... 61

8.1 – Organizzare il Codice: Gli Alias con dim .. 61

8.2 – Oggetti Grafici Semplici: Palla e Missili ... 62

8.3 – La Palla Rimbalzante ... 62

8.4 – La Magia dei Missili Orizzontali ... 63

8.5 – La Spada dell’Eroe ... 64

8.6 – Progetto Guidato: Tiro al Bersaglio ... 67

8.7 – Usare i bit-flag ... 70

Capitolo 9 – Padroneggiare il Playfield .. 73

9.1 – Leggere il Mondo: Il Comando pfread .. 73

9.2 – Missione: Costruire e Distruggere con pfpixel .. 73

9.3 – Mondi in Movimento: Lo Scrolling con pfscroll ... 76

9.4 – Movimento su Griglia per Labirinti Giocabili ... 76

Capitolo 10 – Mondi a Schermate Multiple e Kernel Potenziati .. 79

10.1 – Creare Mondi a Schermate Multiple .. 79

10.2 – Le Due Stanze .. 79

10.3 – I Segreti del Kernel: Grafica Multicolore .. 81

Capitolo 11 – L’Illusione della Fluidità: Movimento Sub-Pixel e Fisica 86

11.1 – Precisione decimale ... 86

11.2 – L’Aritmetica a Virgola Fissa (8.8) in Batari Basic .. 86

Pagina 5 di 236

11.3 – Platform Hero – Fisica Realistica con Salto e Gravità .. 87

Capitolo 12 – Il Cruscotto del Gioco: Punteggi, Vite e Barre di Stato 90

12.1 – Il Punteggio Tradizionale: Il Comando score .. 90

12.2 – Oltre i Numeri: Le Barre di Stato pfscore .. 91

12.3 – Barra della Vita e Contatore Vite... 91

12.4 – Un’Alternativa alle Vite: Il Sistema di Danni.. 92

Capitolo 13 – Ottimizzazione e Debug Avanzato: La Caccia ai “Bug” 94

13.1 – Il Nemico Numero Uno: Lo “Screen Roll” .. 94

13.2 – Rimanere nel Budget: Strategie di Ottimizzazione .. 94

13.3 – La Lente d’Ingrandimento del Detective: Il Debug Visivo 95

Capitolo 14 – E Adesso? ... 96

14.1 - Diventa un Maestro di Batari Basic .. 96

14.2 - Guardare “Sotto il Cofano”: Piegare l’Hardware ... 96

14.3 - Unisciti alla Community: Non Sei Solo! .. 97

14.4 - Giocare sulla TV di Casa: L’Esperienza Autentica .. 97

14.5 – Programmi da provare e appendici .. 98

Parte 3: Giochi da provare ... 99

1. Simple Pong (1 vs. CPU) .. 101

2. Advanced Pong (Pong con Ostacoli – 1 vs 1)... 102

3. Dynamic Pong (Racchetta che si Accorcia – 1 vs CPU) .. 102

4. Killer Acorn (Ghianda Assassina) .. 102

5. Simple Soccer (1 vs 1) .. 103

6. The Watch (Il Guardiano del Castello) ... 103

7. Minotaur (schermate multiple) ... 104

8. Snappy... 104

9. Gnamm (movimenti su griglia) ... 105

10. Highway Racer (corse in Autostrada con aritmetica a virgola fissa) 105

11. Disc Dog (uso di rand) .. 105

Parte 4: Appendici ... 211

Appendice A: I Pilastri del Codice – Sintassi e Operatori .. 213

1. Struttura del Codice e Indentazione .. 213

2. Binario ed esadecimale ... 213

3. Operatori Matematici e Logici .. 214

4. Operatori Bitwise .. 215

Pagina 6 di 236

Appendice B: Il Cruscotto dell’Atari – Guida ai Registri e alle Variabili Speciali 216

1. Gerarchia di Visibilità degli Oggetti (Ordine di Disegno).. 216

2. Tabella Completa dei Registri e Variabili Speciali... 216

3. Moltiplicare gli Oggetti: Trucchi con NUSIZ e CTRLPF .. 219

Appendice C: Ricette di Codice Avanzate.. 221

1. Il Centralino Veloce: on...gosub e on...goto ... 221

2. on...gosub .. 221

3. on...goto .. 221

4. Gestione dei numeri casuali .. 222

5. Range casuali .. 222

6. Posizionamento Casuale e Intelligente degli Sprite .. 223

7. Generare -1 o +1 Casualmente .. 223

8. Le Variabili temp: La Memoria “Usa e Getta” ... 223

9.Gli Array data: Archivi di Informazioni nella ROM ... 223

10. Le “Comb Lines” e la Maschera Nera .. 225

11. Eliminare le Linee Nere del Playfield con no_blank_lines 225

12. Aritmetica BCD e score .. 225

Appendice D: La Sala del Compositore – Guida ai Suoni e alle Note 227

1.I Registri del Suono (le Manopole del Sintetizzatore) ... 227

2.La Scelta dello Strumento (il Registro AUDC) ... 227

3.La Partitura: Tavola Completa delle Note (il Registro AUDF) 228

4.Il Motore Musicale: Creare Melodie con sdata.. 229

Appendice E: Cicli e Kernel ... 232

1.Il Budget di un Frame e la Tabella dei Cicli CPU ... 232

2.Sfruttare il “Tempo Morto” – Spostare il Lavoro nel VBlank 233

Appendice F: Guida ai Colori e Standard TV ... 235

1. Come Funzionano i Colori sull’Atari 2600 .. 235

2. NTSC vs. PAL: Gestire i Diversi Standard Televisivi ... 235

3. Consigli Pratici per la Scelta dei Colori .. 236

Pagina 7 di 236

Introduzione

Nel lontano 1977, nelle case di tutto il mondo, apparve una piccola scatola di legno e plastica che

avrebbe cambiato per sempre il modo di giocare: l’Atari 2600. In un’epoca senza smartphone e

senza Internet, dove i televisori avevano schermi curvi e i telefoni erano attaccati al muro con un

filo, questa console era pura ingegneria creativa. Permetteva a chiunque di controllare mondi

fatti di blocchi colorati e suoni elettronici direttamente dal salotto di casa.

Foto: Sergey Galyonkin, CC BY-SA 2.0.

L’Atari 2600 non era solo un prodotto; fu un fenomeno culturale che definì un’intera

generazione, vendendo oltre 30 milioni di unità nel mondo. Per questa console furono scritti più

di 500 giochi ufficiali, con centinaia di milioni di cartucce vendute, tra cui capolavori come

Pitfall! che da solo superò i 4 milioni di copie.

Per riuscirci, i programmatori di allora compirono veri e propri miracoli. Immagina di dover

costruire un grattacielo con una manciata di mattoncini LEGO. L’Atari 2600 aveva solo 128

byte di memoria RAM. Non megabyte, non kilobyte. Byte. Per darti un’idea, uno smartphone

moderno ha una quantità di memoria RAM almeno 30 milioni di volte superiore. Le cartucce

dei giochi contenevano tipicamente 2 o 4 kilobyte di ROM (memoria di sola lettura), mentre un

gioco moderno può superare i 50 gigabyte. La bravura di quei pionieri non consisteva nell’usare

una potenza infinita, ma nel creare divertimento, avventura ed emozione dal quasi nulla.

Questo libro è il tuo biglietto per quel mondo. Non stai solo per imparare a scrivere codice. Stai

per imparare a pensare come i pionieri dei videogiochi, armato solo di ingegno e di una manciata

di byte. Scoprirai che programmare per l'Atari 2600 è una delle sfide più gratificanti che

esistano. Nell'era moderna, dove la potenza di calcolo è quasi illimitata, è facile perdersi in

grafiche fotorealistiche e mondi sconfinati. Ma su questa console, le regole sono diverse. Con

Pagina 8 di 236

così poche risorse a disposizione, non puoi affidarti alla tecnologia per creare il divertimento.

Devi inventarlo. Qui, il vero "sale" del game design emerge nella sua forma più pura. L'ingegno

non è un'opzione, è l'unico strumento che hai. Ogni byte risparmiato, ogni trucco per simulare un

movimento fluido, ogni scelta di colore per rendere leggibile un nemico, diventa una piccola

vittoria. Il focus si sposta inevitabilmente dalla complessità visiva alla giocabilità: un gioco Atari

ha successo solo se è divertente, immediato e intelligente. La sfida sta nel distillare un'idea fino

alla sua essenza, creando un'esperienza coinvolgente con quasi nulla. È un'arte che ti costringerà

a diventare un programmatore più creativo e consapevole.

Stai per scoprire i segreti di una macchina leggendaria e usare i suoi stessi limiti come fonte di

ispirazione per creare un videogioco tutto tuo. E non sei solo: ancora oggi, una vivace

community di appassionati, chiamata homebrew, continua a creare giochi nuovi di zecca per

questa console, spingendo i suoi limiti oltre ogni immaginazione. Molti di questi nuovi giochi

vengono persino venduti su cartucce fisiche, a dimostrazione della vitalità immortale di una

piattaforma dove l'inventiva conta più di ogni altra cosa.

Le Icone speciali del manuale
Mentre esploreremo Batari Basic, vedrai spesso dei ritagli grafici del gioco leggendario: Pitfall!

Creato nel 1982 dal geniale programmatore David Crane per Activision, Pitfall! non era solo un

gioco: era una rivoluzione tecnologica. In un’epoca in cui i giochi erano spesso limitati a una

singola schermata, Pitfall! presentava un mondo vasto e interconnesso di moltissime schermate,

pieno di giungle, sabbie mobili e tesori. Il suo protagonista, Pitfall Harry, mostrava

un’animazione fluida che sembrava impossibile per l’hardware di allora. Pitfall! è diventato il

simbolo di ciò che è possibile ottenere quando l’ingegno del programmatore supera i limiti

dell’hardware. È la nostra stella polare in questo viaggio.

In questo manuale incontrerai delle icone speciali:

Pitfall!

La testa di un coccodrillo ti avverte di una trappola

pericolosa: un errore comune, una limitazione

hardware o un concetto difficile. Presta la massima

attenzione!

Consiglio prezioso

Un lingotto d’oro rappresenta un consiglio prezioso, un

“tesoro” di conoscenza. È un trucco del mestiere o un

suggerimento che renderà il tuo codice più elegante ed

efficiente.

Approfondimento

Tecnico

Una scaletta che scende indica che stiamo per

analizzare un concetto in profondità, svelando i

meccanismi interni dell’hardware o del software.

Pagina 9 di 236

Prova Tu!

La figura del nostro eroe, Pitfall Harry, ti invita

all’azione. È un esercizio pratico, una sfida per mettere

alla prova le abilità che hai appena imparato.

Perchè questo manuale?
Un tempo, soprattutto negli anni '80, generazioni di programmatori sono nati così: collegando un

computer al televisore di casa e iniziando a digitare comandi in un linguaggio chiamato BASIC.

Quel primo PRINT "CIAO" su uno schermo a tubo catodico era un imprinting incredibile. Era il

momento in cui si scopriva di poter dare ordini a una macchina, di poter tradurre un pensiero in

un'azione. Si imparava sul campo il concetto di algoritmo, il flusso di un programma, l'arte della

caccia al "bug" e l'importanza di tenere il manuale sempre a portata di mano.

Oggi, l’approccio iniziale alla programmazione è spesso visuale, fatto di blocchi colorati da

trascinare e risultati grafici immediati. Ma scrivere codice testuale su uno "schermo nero" ha

qualcosa di ancestrale, un potere unico. Costringe a visualizzare il flusso nella propria mente, a

tracciare lo stato delle variabili, a trasformare un'idea in una sequenza logica di istruzioni. È un

esercizio che non insegna solo a programmare, ma a pensare come un programmatore,

costruendo fondamenta logiche solide.

Programmare in Batari Basic l'Atari 2600, con le sue incredibili limitazioni, è la palestra perfetta

per forgiare l'ingegno:

 Una risoluzione grafica bassissima

 Solo due sprite (player0, player1), due missili (missile0, missile1) e una palla (ball).

 Uno sfondo (Playfield) a blocchi

 Due canali audio con suoni molto caratteristici

 Appena 26 variabili intere (byte) per tutta la logica del tuo gioco.

 Poco più di un centinaio di righe per il tuo codice

In un mondo di abbondanza tecnologica, queste limitazioni potrebbero sembrare insormontabili.

Invece, sono la nostra più grande opportunità. Con così poche armi a disposizione, non puoi

affidarti alla grafica mozzafiato; devi concentrarti su ciò che rende un gioco davvero

interessante: la giocabilità, la fantasia, l'inventiva. La sfida non è creare un gioco nonostante i

limiti, ma creare un bel gioco grazie a essi, spremendo ogni byte e scoprendo trucchi incredibili

per superare ciò che sembra impossibile.

E la ricompensa finale è qualcosa che l'era del "tutto e subito" ha quasi dimenticato: la

soddisfazione di creare, con fatica e ingegno, qualcosa di tangibile. E il grande vantaggio di

Batari Basic è che il tuo programma può anche diventare una vera cartuccia, da inserire nella

console più importante della storia, da giocare sul televisore con amici e familiari.

Ringraziamenti, Fonti e Licenza
Nel preparare questo manuale, si è attinto alla conoscenza collettiva della community Atari, un

tesoro accumulato in decenni di passione. Si desidera ringraziare in particolare le seguenti due

fantastiche fonti, che sono state un punto di riferimento indispensabile:

Pagina 10 di 236

 Il sito Random Terrain's Batari Basic Page, l'enciclopedia definitiva su Batari Basic,

curata con dedizione e competenza.

 La serie di articoli "Programmare il 2600" di Giorgio Balestrieri sulla

rivista RETROMAGAZINE, una fonte preziosa di informazioni.

Nel manuale sono inoltre presenti diversi listati di programmi trovati online e riadattati. Laddove

possibile, i relativi autori sono stati citati.

Licenza d'Uso e Disclaimer
Questo manuale è rilasciato sotto la licenza Creative Commons Attribuzione - Non

commerciale 4.0 Internazionale (CC BY-NC 4.0).

Questo significa che sei libero di:

Condividere: Copiare, distribuire e trasmettere il materiale in qualsiasi formato per scopi non

commerciali.

Adattare: Modificare, trasformare il materiale e basarti su di esso per scopi non commerciali.

Alle seguenti condizioni:

Attribuzione: Devi riconoscere una menzione di paternità adeguata all'autore originale, E-

Paper Adventures, fornire un link alla licenza e indicare se sono state effettuate delle

modifiche.

Non Commerciale: Non puoi utilizzare il materiale per scopi commerciali. Questo include la

vendita diretta del manuale o di sue versioni modificate, o il suo utilizzo in prodotti o servizi a

pagamento. L'uso didattico, personale e senza scopo di lucro è invece pienamente incoraggiato.

In parole semplici: puoi usare, copiare, modificare e distribuire questo manuale liberamente per

qualsiasi scopo educativo o personale, a patto di citare sempre l'autore originale e di non trarne

un profitto economico.

Disclaimer:
Le informazioni, i codici e le tecniche contenute in questo manuale sono forniti "così come

sono", senza garanzie di alcun tipo. L'autore ha compiuto ogni sforzo per garantire l'accuratezza

dei contenuti, ma non si assume alcuna responsabilità per eventuali errori, omissioni o danni

derivanti dall'uso delle informazioni qui presentate.

Pagina 11 di 236

Parte 1: Le Basi della Programmazione in Batari Basic

Immagine del gioco Pitfall! di David Crane per Activision

Pagina 12 di 236

Pagina 13 di 236

Capitolo 1 – I Tuoi Attrezzi

Prima di partire per il passato, hai bisogno della sua attrezzatura. In questo capitolo, prepareremo

insieme la nostra “officina digitale”: un luogo speciale sul tuo computer moderno per

programmare l’Atari 2600. Non preoccuparti, anche se la nostra destinazione è “vintage”, i nostri

strumenti saranno moderni, potenti e facili da usare.

Foto: Sergey Galyonkin, CC BY-SA 2.0.

1.1 – Un Salto nel Tempo
Immagina di tornare nel 1977. I computer personali sono ancora un sogno per pochi e i

videogiochi sono una novità esplosiva confinata nelle sale giochi. In quell’anno, Atari lancia una

scatola magica che cambierà tutto: l’Atari Video Computer System, che il mondo imparerà a

conoscere come Atari 2600.

Per la prima volta, intere famiglie potevano giocare a titoli come Pac-Man, Space Invaders e

Pitfall! direttamente sul televisore di casa, grazie a delle cartucce intercambiabili. La 2600 non

era solo una console, era un fenomeno culturale che ha definito un’intera generazione.

Oggi, a decenni di distanza, potresti pensare che sia solo un pezzo da museo. E invece no!

Un’incredibile comunità di appassionati, chiamati homebrew developer (sviluppatori

casalinghi), continua a creare giochi nuovi di zecca per questa console, spingendo i suoi limiti

oltre ogni immaginazione. E tu stai per diventare uno di loro.

Il nome in codice originale dell’Atari 2600 era “Stella”. Si dice che fosse il nome della bicicletta

di uno degli ingegneri. Anche se il nome ufficiale divenne un altro, quel nomignolo è rimasto nel

cuore degli appassionati. Non a caso, il più famoso programma per provare i giochi Atari 2600

sul computer si chiama proprio Stella!

Pagina 14 di 236

1.2 – Il linguaggio Batari Basic
Per dare ordini alla nostra console, abbiamo bisogno di un linguaggio che possa capire. L’Atari

2600 parla solo un linguaggio numerico (fatto di 0 e 1) molto complesso, quasi incomprensibile.

Noi, invece, parliamo una lingua umana. Come facciamo a comunicare?

Usando un traduttore speciale: il linguaggio Batari Basic.

Se hai già sentito parlare del linguaggio BASIC, forse lo associ a computer come il Commodore

64. Quei BASIC erano come dei traduttori simultanei: ascoltavano un comando e lo traducevano

all’istante. L’Atari 2600, però, è una creatura molto più semplice e non ha abbastanza potenza

per una traduzione dal vivo. Ha bisogno di ricevere istruzioni già perfettamente tradotte.

Ecco perché il Batari Basic (spesso abbreviato in bB) è così speciale:

• Parla la lingua dell’Atari. Invece di tradurre al momento, il Batari Basic agisce come un

traduttore che prepara un intero “libro di istruzioni” (il nostro gioco) in un file che una

vera cartuccia Atari 2600 (o un emulatore) può eseguire. Questo processo si chiama

compilazione.

• Conosce le regole della macchina. La sua sintassi, a volte un po’ strana, è stata creata

appositamente per “dialogare” con i chip della console, rispettando le sue incredibili

limitazioni.

• È un ponte tra la semplicità e la complessità. Non devi essere un genio dell’assembly

(il linguaggio a bassissimo livello) per iniziare, ma mentre programmi in bB, impari a

“sentire” come ragiona la macchina.

1.3 – Assemblare l’Officina
Anche se la console è antica, la nostra officina sarà modernissima. Useremo due strumenti

principali che lavoreranno insieme.

• L’IDE (Visual Studio Code + Atari Dev Studio): La nostra cassetta degli attrezzi

digitale. Un Ambiente di Sviluppo Integrato (IDE) è un programma che contiene tutti gli

strumenti di cui abbiamo bisogno. Useremo Visual Studio Code, un editor di testo molto

popolare, con un’estensione speciale chiamata Atari Dev Studio. Insieme, ci daranno:

– Un editor intelligente che colora il codice e ci suggerisce i comandi.

– Il “traduttore” Batari Basic integrato.

– Un pulsante magico (F5) per compilare il gioco e avviarlo all’istante!

• L’Emulatore (Stella): Un simulatore per la nostra macchina del tempo. Invece di

usare una vera console Atari 2600, useremo un emulatore: un programma che finge di

essere una console Atari sul tuo computer. Il migliore è Stella (proprio come il nome in

codice!), e Atari Dev Studio lo userà automaticamente per lanciare i tuoi giochi.

È ora di assemblare la nostra officina. I passi principali sono:

• Scarica e installa Visual Studio Code dal suo sito ufficiale (cerca “Visual Studio Code”

sul tuo motore di ricerca preferito) per il sistema operativo del tuo computer (Windows,

MacOS, …)

• Aprilo. Sulla barra laterale sinistra, cerca un’icona con dei quadratini: è la sezione

“Estensioni”. Cliccaci sopra.

• Nella barra di ricerca che appare, digita “Atari Dev Studio” e premi Invio.

• Clicca sul pulsante “Installa” accanto all’estensione.

• Una volta finita l’installazione, riavvia Visual Studio Code.

Pagina 15 di 236

Qui di seguito la procedura in dettaglio per Windows.

Vai sulla sezione download del sito di Visual Studio Code:

Scarica la versione per Windows:

Attendi che il download si completi:

Pagina 16 di 236

Procedi con l’installazione come indicato nelle immagini qui di seguito.

Durante l’installazione Windows potrebbe richiedere ulteriori conferme per procedere

(controlla se vi è un icona lampeggiante nella barra delle applicazioni in basso e in

caso clicca su di essa e dai l’OK nella finestra che appare).

Pagina 17 di 236

Una volta installato, Visual Studio Code verrà lanciato. Puoi chiudere subito la finestra di

Welcome e quella relativa agli agenti AI, cliccando sulle relative “X” (circoletto rosso).

Clicca sull’icona estensioni a sinistra (circoletto blu) e nella finestra che apparirà inserisci “atari

dev Studio” e successivamente premi su “install”:

Pagina 18 di 236

Accetta come credibile l’autore dell’estensione:

Controlla in basso che l’installazione proceda e termini correttamente:

Pagina 19 di 236

Chiudi Visual Studio Code e cerca sul desktop l’icona per lanciarlo nuovamente:

Appena si apre la finestra, puoi nuovamente chiudere il TAB di Welcome e quello relativo agli

agenti AI.

Pagina 20 di 236

Capitolo 2 – Cominciamo a programmare!

La nostra officina digitale è pronta. Il nostro primo obiettivo è senmplice, ma fondamentale:

vogliamo ottenere un segnale stabile. Un semplice schermo nero, immobile e silenzioso, sarà la

prova che abbiamo stabilito un contatto con il 1977.

2.1 – Lo Scheletro di un programma batari basic
È ora di sporcarsi le mani! Apri Visual Studio Code. Per prima cosa, crea una cartella sul tuo

computer (ad esempio sul desktop) dove conserverai tutti i tuoi progetti per l’Atari 2600.

Chiamala, ad esempio, AvventureAtari.

Ora segui questi passi:

1. In Visual Studio Code, vai su File > Nuovo File di Testo (New Text File)

2. Vai subito su File > Salva con nome… (Save As). Naviga fino alla tua cartella

AvventureAtari e salva il file con il nome primo_gioco.bas. L’estensione .bas è molto

importante, perché dice ad Atari Dev Studio che questo è un file Batari Basic!

3. Scrivi queste poche righe di codice nel file. Fai molta attenzione a dove metti gli spazi e a

cosa scrivi all’inizio della riga! La sintassi è come una formula: ogni simbolo deve essere

al posto giusto, spazi a inizio riga compresi!

 rem Il mio primo programma bB

 set romsize 2k

main

 drawscreen

 goto main

Ora, premi il tasto F5 sulla tua tastiera.

Pagina 21 di 236

Se tutto è andato per il verso giusto, l’emulatore Stella dovrebbe aprirsi e mostrarti… uno

schermo nero!

Aspetta, non ti preoccupare! Non hai rotto niente. Anzi, hai appena compiuto il primo, grande

passo. Se vedi uno schermo nero, stabile, che non trema e non “rotola” su se stesso, significa che

tutto ha funzionato! Hai appena creato e avviato il tuo primo programma per Atari 2600. Ben

fatto!

Il Processo di Compilazione

Quando scrivi il tuo codice in Batari Basic (un file con estensione .bas), stai

scrivendo in un linguaggio “ad alto livello”, fatto di parole che possiamo capire

come if, goto, player0x. Ma la CPU dell’Atari 2600, il MOS 6507, non capisce

queste parole. Comprende solo il linguaggio macchina, una sequenza di numeri che

corrispondono a operazioni molto semplici.

È qui che entra in gioco il processo di compilazione.

La compilazione è l’atto di tradurre il tuo codice sorgente (.bas) in un file

eseguibile in linguaggio macchina. Quando premi F5 in Visual Studio Code,

l’estensione Atari Dev Studio avvia un programma chiamato compilatore che fa

esattamente questo.

Il compilatore legge il tuo file bas dall’inizio alla fine e poi converte ogni comando

Batari Basic nel suo equivalente in linguaggio macchina 6507. Ad esempio, la riga

player0x = 80 viene tradotta in una sequenza di istruzioni numeriche che dicono alla

CPU: “Prendi il numero 80 e mettilo nell’indirizzo di memoria che controlla la

posizione X di player0”.

Il risultato di questa traduzione è un nuovo file, di tipo bin. Questo file .bin (da

“binario”) è la tua cartuccia di gioco virtuale. Non contiene più parole, ma solo la

sequenza pura di 0 e 1 (rappresentati come numeri) che la CPU dell’Atari 2600 può

eseguire direttamente.

Pagina 22 di 236

L’estensione Atari Dev Studio, per mantenere le cose ordinate, crea una sottocartella

chiamata bin all’interno della cartella del tuo progetto. È lì che troverai il file .bin

pronto per essere eseguito.

Quando l’emulatore Stella si avvia, non sta eseguendo il tuo file .bas. Quello è solo

il tuo “progetto”. Stella carica ed esegue il file .bin che il compilatore ha creato. È

quel file binario che contiene le vere istruzioni che danno vita al tuo gioco.

Capire questa distinzione è fondamentale: noi scriviamo in un linguaggio umano, il

compilatore lo traduce, e la console esegue solo il risultato finale di quella

traduzione.

E se qualcosa va storto?

Prima che Stella si apra, noterai del testo apparire nella parte bassa di Visual Studio

Code, in una finestra chiamata “OUTPUT”. Questo è il diario di bordo della nostra

officina: ci racconta cosa sta succedendo “sotto il cofano”.

Quando tutto va bene

Se hai scritto il codice correttamente, vedrai un messaggio simile a questo:

Starting build of primo_gioco.bas

batari Basic v1.9 (c)2025

 2600 Basic compilation complete.

607 bytes of ROM space left

Completed build in 0 seconds

 ...

Launching Stella emulator...

Le righe importanti sono “2600 Basic compilation complete” e “Completed

build”. Significano che il “traduttore” (il compilatore) ha capito le tue istruzioni e

ha creato con successo il file di gioco. Subito dopo, l’estensione lancerà l’emulatore

Stella.

Quando qualcosa va storto

Se hai commesso un piccolo errore di battitura (ad esempio, hai messo uno spazio

prima di main), il traduttore non capirà e si fermerà. Vedrai un messaggio di errore:

Starting build of primo_gioco.bas

batari Basic v1.9 (c)2025

line 4: Error: Unknown keyword: main

ERROR: 2600basic compilation failed.

L’emulatore Stella non si avvierà. Il messaggio Error: Unknown keyword: main

sembra strano: “main” non è una parola chiave sconosciuta!

Questo ci insegna una lezione fondamentale su Batari Basic: i messaggi di errore

spesso indicano dove si trova il problema, ma non sempre spiegano chiaramente

quale sia. In questo caso, l’errore non è la parola main, ma lo spazio che la precede,

che viola la regola delle etichette in colonna 0.

Pagina 23 di 236

2.2 – Anatomia dello Scheletro: Il Codice Spiegato
Quello che hai appena scritto è lo “scheletro” di ogni gioco per Atari 2600. È la struttura

fondamentale che tiene tutto insieme. Analizziamola riga per riga.

rem Il mio primo programma bB  rem (che sta per remark, “osservazione”) è un commento. È

una nota per te, l’essere umano. Tutto ciò che scrivi dopo rem su una riga viene completamente

ignorato dal computer. Usalo per prendere appunti e ricordare cosa fa il tuo codice!

set romsize 2k Questa è una direttiva per il nostro “traduttore” (il compilatore). Gli stiamo

dicendo: “Prepara una ‘cartuccia’ virtuale da 2 kilobyte”. È la dimensione più piccola possibile,

perfetta per i nostri primi esperimenti.

main  Questa è un’etichetta o label. Pensa a un segnalibro. Deve stare sempre all’inizio della

riga (in colonna 0, senza spazi prima) e serve come punto di riferimento, un luogo a cui

possiamo dire al programma di “saltare”.

drawscreen  Questo è il comando principale. È il cuore pulsante del nostro programma. Ogni

volta che il programma esegue questo comando, dice all’hardware dell’Atari: “Ok, per ora ho

finito di preparare tutto. Disegna un fotogramma sullo schermo!”. In questo caso, non avendo

preparato nulla, disegna semplicemente uno schermo vuoto (nero).

goto main  goto significa “vai a”. Questa istruzione dice al programma: “Salta

immediatamente indietro fino all’etichetta chiamata main”.

Cos'è un Programma? Il Flusso delle Istruzioni

Pensa a un programma come a una ricetta di cucina per il computer. È una lista di

istruzioni semplici e precise, scritte in un linguaggio che la macchina può capire.

Proprio come tu segui una ricetta passo dopo passo, il computer esegue il tuo

programma un'istruzione alla volta, dall'alto verso il basso. Questo percorso

sequenziale è chiamato flusso di esecuzione.

Pagina 24 di 236

Comandi come goto o if...then sono gli strumenti che ci permettono di creare cicli,

prendere decisioni e deviare dal semplice percorso dall'alto verso il basso, dando

vita a programmi complessi e interattivi. Li vedremo presto!

Due Tipi di Commenti, rem e ;

In Batari Basic, hai due modi per lasciare note nel tuo codice: rem e il punto e

virgola (;). Sebbene entrambi servano a scrivere commenti, hanno un uso stilistico e

pratico diverso che ti aiuterà a mantenere il codice ordinato.

rem (Remark): Per commenti a riga intera.

rem deve trovarsi all'inizio di un'istruzione (dopo l'indentazione). Tutto ciò che

segue su quella riga è un commento. È ideale per creare titoli di sezione o per

descrivere in dettaglio un blocco di codice complesso.

; (Punto e virgola): Per commenti a fine riga.

Il punto e virgola può essere inserito dopo un comando. Tutto ciò che segue il ; fino

alla fine della riga viene ignorato. È perfetto per aggiungere brevi note che spiegano

cosa fa una singola riga di codice, senza interrompere il flusso. Fai attenzione che

in alcune piattaforme di sviluppo per Atari 2600 che utilizzano batari basic il ;

non è accettato come commento valido. Se vuoi scrivere codice 100%

compatibile, usa solo rem da solo su righe di codice dedicate!

Evitare errori: suggerimenti

1. Copia gli esempi con precisione: All’inizio, il 99% degli errori deriva da piccole

imprecisioni. Batari Basic è molto severo sulla sintassi! Assicurati di copiare gli

esempi esattamente come sono scritti, prestando la massima attenzione a spazi,

due punti (:) e parole chiave, a maiuscole e minuscole. Ecco alcuni suggerimenti:

- l’errore “Error: Unknown keyword: …” è quasi certamente dovuto a “:” usati

dopo una label (etichetta) oppure a dei rem messi ad inizio riga (serve almeno uno

spazio prima!)

- le label non vogliono “:” alla fine, ma alcune parole speciali come playfield e

player0 si! Fai sempre attenzione al “:” alla fine della riga.

- un altro errore tipico sono gli “end” che non sono collocati ad inizio riga

- aggiungi sempre una riga vuota come ultima linea del tuo programma

2. Isola il Problema: Se aggiungi un nuovo blocco di codice e il programma smette

di compilare, l’errore è quasi certamente lì. Una tecnica da detective è

“commentare” le nuove righe (mettendo rem all’inizio di ognuna) e provare a

ricompilare. Se ora funziona, sai che il problema è in una di quelle righe.

3. Compila senza Avviare: Premere F5 fa due cose: compila il gioco e, se ha

successo, avvia Stella. A volte, potresti voler solo controllare se il codice compila.

Puoi farlo premendo Ctrl+Shift+B (o andando su “Terminale > Esegui attività di

compilazione”). Questo eseguirà solo la compilazione e ti mostrerà eventuali errori

nella finestra di OUTPUT, senza lanciare l’emulatore.

Man mano che procederemo, questo manuale ti indicherà gli errori più tipici (i

Pitfall!) a cui prestare attenzione. Tecniche di debug più avanzate, per scovare errori

non di sintassi ma di logica (i cosiddetti “bug”), saranno introdotte nel Capitolo 12.

Per ora, la tua migliore amica è la precisione!

Pagina 25 di 236

2.3 – Il Ciclo Infinito: Il Motore del Tempo
Mettendo insieme main e goto main, abbiamo creato un ciclo infinito. Il programma parte da

main, esegue drawscreen e poi goto main gli dice di tornare subito all’inizio. E poi di nuovo, e di

nuovo, circa 60 volte al secondo! Questo ciclo continuo è ciò che mantiene lo schermo stabile e

impedisce all’immagine di “crollare”. È il motore che fa girare il nostro gioco.

2.4 – I Registri del TIA: Il Cruscotto della Console
È ora di mettere in pratica la teoria! Abbiamo detto che il chip TIA è l’artista della console.

Diamogli il nostro primo ordine diretto. Diciamogli di cambiare il colore dello sfondo. Per farlo,

comunicheremo con uno dei suoi “cassetti” speciali, chiamati registri.

Apri il tuo file primo_gioco.bas e modificalo così:

 rem Sfondo semplice

 set romsize 2k

main

 COLUBK = $86 ; Imposta lo sfondo a un bel blu

 drawscreen

 goto main

Cosa fa questo nuovo codice?

COLUBK = $86  Questa è la nuova riga. COLUBK è il nome del registro del TIA che

controlla il colore dello sfondo (COlor LUMINOSITY Background). Stiamo scrivendo in quel

registro il valore $86. Il simbolo $ indica che è un numero esadecimale, un modo di contare

molto usato dai programmatori. Per ora, ti basta sapere che $86 corrisponde a un bel blu sulla

tavolozza di colori dell’Atari.

Ora, premi F5.

Il tuo schermo nero dovrebbe essere diventato… blu! Hai appena dato il tuo primo comando

diretto all’hardware dell’Atari! Stai parlando la sua lingua.

2.5 – Missione: “Hello, Player!”
Basta con gli schermi vuoti. È il momento di creare il nostro primo attore, un piccolo eroe fatto

di quadrati luminosi. Daremo vita al nostro primo oggetto grafico, imparando a definirne la

forma, la posizione e il colore.

Modifica il tuo file primo_gioco.bas. Come sempre, fai molta attenzione all’indentazione!

 rem Primo programma bB - Hello Player!

 set romsize 2k

main

 player0:

 %11111111

 %11111111

 %11111111

 %11111111

end

 COLUP0 = $1E ; colore del player0 (giallo)

 player0x = 80 ; posizione orizzontale

 player0y = 50 ; posizione verticale

 COLUBK = $86 ; colore di sfondo (blu)

 drawscreen

 goto main

Premi F5. Vedrai un piccolo quadrato giallo apparire al centro dello schermo blu. Ce l’hai fatta!

Hai appena evocato il tuo primo sprite dal freddo silicio della console!

Pagina 26 di 236

Screenshot dell’emulatore Stella che mostra un semplice quadrato giallo su sfondo blu, come risultato del codice.

2.6 – Il Codice Spiegato
Questo codice è più complesso. Analizziamolo per capire i segreti che nasconde.

player0  è un’etichetta speciale che definisce la grafica per il primo oggetto mobile, chiamato

Player 0.

 player0:

 %11111111

 %11111111

 %11111111

 %11111111

end

Le righe che iniziano con % rappresentano i dati binari (On/Off) che disegnano lo sprite. Ogni

riga è una fetta orizzontale di 8 pixel. 1 significa “pixel acceso” (visibile), 0 significa “pixel

spento”. In questo caso, stiamo creando un blocco solido.

end  segnala la fine della definizione grafica.

Pagina 27 di 236

 COLUP0 = $1E ; colore del player0 (giallo)

 player0x = 80 ; posizione orizzontale

 player0y = 50 ; posizione verticale

COLUP0 = $EA  È il registro del colore per il player0 (COlor LUMINOSITY Player 0). Il

valore $1E corrisponde a un bel giallo brillante.

player0x = 80  Imposta la coordinata orizzontale (x) dello sprite.

player0y = 50 Imposta la coordinata verticale (y) dello sprite.

Ma cosa significano esattamente questi numeri? Per capirlo, dobbiamo conoscere la mappa del

nostro universo digitale.

2.7 – Il Sistema di Coordinate dell’Atari
Pensa allo schermo dell’Atari 2600 come a una mappa. Ogni punto su questa mappa ha delle

coordinate, proprio come in una battaglia navale.

• L’Origine (0, 0): Il punto di partenza è l’angolo in alto a sinistra dello schermo.

• L’Asse X (Orizzontale): I valori di player0x aumentano da sinistra verso destra.

L’intervallo visibile va circa da 0 (bordo sinistro) a 159 (bordo destro).

• L’Asse Y (Verticale): I valori di player0y aumentano dall’alto verso il basso.

L’intervallo visibile va circa da 0 (bordo superiore) a 95 (bordo inferiore).

Il Punto di Origine dello Sprite

Quando imposti player0x e player0y, a quale pixel dello sprite ti riferisci? La regola è: le

coordinate (x, y) si riferiscono sempre all’angolo in alto a sinistra del tuo sprite.

Quindi, player0x = 80 e player0y = 50 posiziona l’angolo in alto a sinistra del nostro quadrato

giallo al centro dello schermo.

Pagina 28 di 236

Coordinate diverse per sprite e playfield

Attenzione a non confonderti! Il sistema di coordinate per gli sprite (0-159 in

orizzontale, 0-95 in verticale) è diverso da quello usato per manipolare lo sfondo (il

Playfield) con comandi che vedremo più avanti come pfpixel e pfread. Il Playfield

usa un sistema a “blocchi” molto più piccolo (da 0 a 31 in orizzontale e da 0 a 10 in

verticale). Parleremo di questo nel Capitolo 4. Per ora, ricorda che player0x e le

coordinate del Playfield sono due cose diverse!

I colori dell’ATARI 2600

Un colore sull’Atari 2600 è definito da un singolo byte (un valore da 0 a 255). La

tabella che segue mostra la tavolozza di 128 colori disponibile sullo standard

televisivo NTSC (Nord America, Giappone). I valori sono in esadecimale (un modo

più compatto di scrivere i numeri). Per trovare un colore, incrocia la la riga della

Tonalità (la prima cifra, $X-) con la colonna della Luminosità (la seconda cifra, $-

Y). Ad esempio $1E è un bel giallo brillante ($1E corrisponde a 30).

Pagina 29 di 236

Capitolo 3 – Muovere l’Eroe

Il nostro piccolo eroe giallo è sul palco. È definito, colorato e sa dove stare. Ma c’è un problema:

è immobile, come una statua. Un gioco non è veramente un gioco finché il giocatore non può

interagire. È il momento di dare al nostro personaggio il dono più prezioso di tutti: il

movimento. In questo capitolo, collegheremo il mondo fisico al nostro universo digitale.

Prenderemo i segnali elettrici (virtuali) di un joystick e li trasformeremo in azioni sullo schermo.

3.1 – Ascoltare il Giocatore: Leggere il Joystick
Come fa il nostro programma a sapere se stai spingendo la levetta del joystick? Il Batari Basic

rende questo compito incredibilmente semplice. Ci fornisce dei comandi speciali che, usati

all’interno di una condizione if, si comportano come delle domande dirette alla console.

I comandi principali per il primo joystick (chiamato joy0) sono:

• joy0up (su)

• joy0down (giù)

• joy0left (sinistra)

• joy0right (destra)

• joy0fire (il pulsante di fuoco rosso)

Questi comandi diventano “veri” solo quando il giocatore sta effettivamente compiendo

quell’azione. Possiamo usarli per creare delle logiche molto semplici, come: “SE il giocatore

preme a destra, ALLORA fai qualcosa”.

3.2 – Primi Passi
Mettiamo subito in pratica questa conoscenza. Modifichiamo il nostro codice primo_gioco.bas

per far muovere il quadrato a destra e a sinistra. Aggiorna la sezione main in questo modo:

main

 player0:

 %11111111

 %11111111

 %11111111

 %11111111

end

 if joy0left then player0x = player0x - 1

 if joy0right then player0x = player0x + 1

 COLUP0 = $1E ; colore del player0 (giallo)

 player0y = 50 ; posizione verticale (per ora fissa)

 COLUBK = $86 ; colore di sfondo (blu)

 drawscreen

 goto main

Cosa c’è di nuovo?
• if joy0left then player0x = player0x - 1: Questa è la nostra logica di movimento. Dice:

“SE il joystick è spinto a sinistra, ALLORA prendi il valore attuale di player0x, sottrai 1

e salva il nuovo risultato in player0x”. Questo sposta lo sprite di un pixel a sinistra.

• if joy0right then player0x = player0x + 1: Fa la stessa cosa, ma aggiungendo 1 per

spostare lo sprite a destra.

Pagina 30 di 236

Operatori e Parentesi

Nel tuo viaggio, avrai costantemente bisogno di fare calcoli per muovere

personaggi, aggiornare timer o gestire punteggi. Batari Basic ti mette a disposizione

gli operatori matematici fondamentali, ma con alcune regole specifiche che devi

conoscere.

Gli Operatori di Base: + - *

 + (Addizione): Somma due numeri.

 - (Sottrazione): Sottrae un numero da un altro.

 * (Moltiplicazione): Moltiplica due numeri.

La Divisione Intera: /

Qui devi prestare molta attenzione. A differenza della matematica a cui sei abituato,

la divisione in Batari Basic è solo intera. Questo significa che il risultato perde

qualsiasi parte decimale.

10 / 2 darà come risultato 5 (corretto).

10 / 3 darà come risultato 3, non 3.333.... Il resto viene semplicemente scartato.

5 / 2 darà come risultato 2, non 2.5.

L'Ordine delle Operazioni e le Parentesi ()

Batari Basic segue le regole matematiche standard per l'ordine delle operazioni: la

moltiplicazione (*) e la divisione (/) vengono eseguite prima dell'addizione (+) e

della sottrazione (-).

risultato = 5 + 2 * 3 darà 11 (perché 2 * 3 viene calcolato prima).

Per forzare un ordine diverso, devi usare le parentesi (). Tutto ciò che è all'interno

delle parentesi viene calcolato per primo.

risultato = (5 + 2) * 3 darà 21 (perché 5 + 2 viene calcolato prima).

La Magia dei Numeri Negativi

Hai appena scritto player0x = player0x - 1. Semplice, vero? Ma come fa un

programma che conosce solo numeri da 0 a 255 a capire cosa significa “sottrarre”?

La risposta è uno dei trucchi più geniali della programmazione a 8 bit, chiamato

complemento a due. Pensa a un contachilometri che arriva solo fino a 255. Se sei a

0 e vai indietro di 1, cosa succede? Fa il giro al contrario e va a 255! Per la CPU

dell’Atari, quindi, fare “0 – 1” è la stessa identica cosa che ottenere 255. Questo

significa che il numero 255 si comporta esattamente come -1. Non devi

memorizzare tutto, ma ricorda: i numeri “alti” (vicino a 255) possono comportarsi

come piccoli numeri negativi. È una tecnica fondamentale che useremo spesso!

Quando hai dubbi sull'ordine in cui verranno eseguiti i calcoli, usa sempre le

parentesi. Non costano nulla in termini di performance e rendono il tuo codice

infinitamente più chiaro e meno soggetto a bug.

Pagina 31 di 236

Premi F5 per avviare l’emulatore. Ora hai il controllo! Ma come muovi il tuo eroe senza un vero

joystick? L’emulatore Stella ti permette di usare la tastiera del tuo computer per simulare i

joystick e i tasti della console. Di default, i controlli sono mappati come segue:

Giocatore 1 (joy0)  Tasti Freccia: Per muovere la levetta nelle quattro direzioni (su, giù,

sinistra, destra). Barra Spaziatrice: Per premere il pulsante di fuoco (joy0fire).

Giocatore 2 (joy1)  Tasti F, R, D, G: Per muovere la levetta (F=su, R=destra, D=giù,

G=sinistra). Tasto A (o tasto 0 del tastierino numerico): Per premere il pulsante di fuoco

(joy1fire).

Per provare il codice, usa i tasti freccia sinistra e destra sulla tua tastiera. Vedrai il tuo quadrato

muoversi!

Per controllare lo stato del joystick, non devi mai usare il segno di uguale (=). Il

comando stesso è la condizione.

 if joy0right then ... ← Corretto!

 if joy0right = 1 then ... ← Errato!

In Batari Basic, le condizioni if...then devono stare su una sola riga.

 if joy0right then player0x = player0x + 1 ← Corretto!

 if joy0right then

 player0x = player0x + 1 ← Errato!

Questo errore di sintassi è una delle trappole più comuni per chi inizia. Tienilo a

mente!

E se vuoi controllare se una direzione non è premuta? Usa il punto esclamativo !

(che significa NON):

 if !joy0fire then ... (SE il pulsante di fuoco NON è premuto…)

3.3 – Il Ponte di Comando: Joystick e Interruttori della Console
L’Atari 2600 era famosa per il suo iconico joystick nero con un singolo pulsante rosso. La

console supportava due giocatori, ognuno con il proprio controller, identificati nel nostro codice

come joy0 (giocatore 1, collegato alla porta sinistra) e joy1 (giocatore 2, collegato alla porta

destra).

Gli Interruttori della Console: Tasti “Software”

Oltre ai joystick, la console aveva una fila di interruttori metallici sul pannello frontale. Una

delle genialità dell’Atari 2600 è che la funzione di questi tasti non era “cablata” nell’hardware,

ma era definita dal software. Questo significa che un programmatore poteva decidere a cosa

servisse ogni interruttore, rendendoli estremamente versatili. Ecco i principali e il loro uso più

comune:

Pagina 32 di 236

• switchreset (Game Reset): Solitamente usato per riavviare il gioco dall’inizio, tornando

alla schermata del titolo.

• switchselect (Game Select): Usato per ciclare tra le diverse modalità di gioco prima di

iniziare (es. 1 giocatore vs 2 giocatori, facile vs difficile).

• switchbw (Color / B&W): Usato per passare dalla modalità a colori a quella in bianco e

nero. Molti programmatori, in modo creativo, lo riutilizzarono come tasto di pausa!

• switchleftb / switchrightb (Difficulty A/B): Due interruttori per impostare la difficoltà

(A=Advanced, B=Beginner) separatamente per il giocatore 1 e 2. Spesso cambiavano la

velocità dei nemici, la dimensione delle racchette (in Pong), o altri parametri di gioco.

Nell’emulatore Stella, questi interruttori sono mappati su tasti funzione  F1: Game Reset ; F2:

Game Select ; F3 / F4: Difficoltà Giocatore 1 / 2 (Sinistra / Destra) ; F5: Colori / Bianco e Nero

L’Esperienza Autentica: L’Atari 2600+

Mentre l’emulatore è uno strumento fantastico per lo sviluppo, nulla batte la sensazione di

giocare con un vero joystick. Oggi, grazie a console moderne come l’Atari 2600+, è possibile

rivivere quell’esperienza. Questa console è una riproduzione fedele dell’originale, ma con

un’uscita HDMI per i televisori moderni. Viene fornita con un joystick CX40+ che ricrea

perfettamente il feeling del controller classico. Grazie a speciali “cartucce flash” (come la

Harmony Cartridge), potrai persino caricare e giocare i giochi che creerai con questo manuale

sulla tua console Atari 2600+, chiudendo il cerchio del tuo viaggio nel tempo!

3.4 – Clamping: I Muri Invisibili del Mondo
Prova a muovere il quadrato tutto a sinistra o tutto a destra. Sparisce! È uscito dai confini dello

schermo e si è perso nel vuoto digitale. Dobbiamo dargli dei limiti, come se ci fossero dei muri

invisibili ai lati del mondo. Questa tecnica si chiama clamping.

Modifichiamo le nostre righe if per aggiungere un controllo sui bordi, usando l’operatore AND

“&&” che significa “E”.

 if joy0left && player0x > 8 then player0x = player0x - 1

 if joy0right && player0x < 152 then player0x = player0x + 1

Ora le nostre condizioni sono più complesse:

• “SE il joystick è a sinistra E la posizione player0x è maggiore di 8, ALLORA muoviti a

sinistra.”

• “SE il joystick è a destra E la posizione player0x è minore di 152, ALLORA muoviti a

destra.”

Questo impedisce al programma di aggiornare la posizione se lo sprite è già arrivato al bordo,

bloccandolo efficacemente all’interno dell’area di gioco visibile. (I valori 8 e 152 sono scelti per

tenere conto della larghezza dello sprite).

Gli Operatori Logici && (E) e || (OPPURE)

Quando vogliamo verificare che due o più condizioni sono vere

contemporaneamente abbiamo bisogno degli operatori logici.

&& (AND logico - E): Restituisce “vero” solo se tutte le condizioni che collega

sono vere. È perfetto per creare requisiti stringenti.

Esempio: if joy0left && player0x > 8 then ...

Pagina 33 di 236

Significato: “Esegui il comando solo SE il joystick è a sinistra E la posizione x è

maggiore di 8.”

|| (OR logico - OPPURE): Restituisce “vero” se almeno una delle condizioni che

collega è vera. È ideale per controllare se si verifica una tra più possibilità.

Esempio: if joy0left || joy0right then ...

Significato: “Esegui il comando SE il joystick è a sinistra OPPURE SE è a destra.”

Questi operatori sono i mattoni fondamentali per creare una logica di gioco

complessa e reattiva.

Non Mischiare && e || nello Stesso if!

Questa è una delle limitazioni più importanti e contro-intuitive di Batari Basic. A

differenza dei linguaggi moderni, non puoi usare && e || insieme all’interno della

stessa condizione if. Se lo fai, otterrai un comportamento imprevedibile o errato! Se

necessario devi sempre scomporre la logica in più istruzioni if, una per ogni

“gruppo” di condizioni che ti servono.

Non usare più di un || in un if!

A differenza di &&, non utilizzare mai più di un || nello stesso if altrimenti il

programma non funzionerà.

3.5 – Un Tocco di Stile: Riflettere lo Sprite con REFP0
Il nostro quadrato si muove, ma è un po’ noioso. Diamo al nostro personaggio un po’ più di vita.

Invece di un quadrato, disegniamo una semplice navicella. Sostituisci il blocco player0: con

questo:

 player0:

 %01111100

 %00111111

 %01111100

end

Costruire dal basso verso l’alto

La prima riga di dati (%01111100) disegna in realtà la riga più bassa dello sprite! Il

TIA (il chip grafico) infatti legge e disegna i dati dello sprite in ordine inverso

rispetto al codice batari basic.

Qui sotto hai l’esempio di un automobile. Il tuo codice per questa automobile

sarebbe:

 player0:

 %01000010

 %10100101

 %11111111

 %01111110

 %10000001

 %01000010

 %00111100

end

Pagina 34 di 236

Premi F5 e ricompila tutto. Ora, quando ti muovi, la “punta” della navicella è sempre rivolta a

destra. Non sarebbe bello se si “girasse” per guardare a sinistra quando ci muoviamo in quella

direzione?

Possiamo farlo con un altro registro del TIA: REFP0 (REFlect Player 0). Questo registro agisce

come un interruttore per uno specchio.

Molti registri del TIA, incluso REFP0, sono volatili. Questo significa che il loro

valore viene automaticamente azzerato (resettato a 0) dopo ogni drawscreen. Se

impostiamo REFP0 solo quando premiamo il joystick, l’effetto durerà un solo

frame e poi svanirà! Per mantenere un effetto persistente, come la riflessione dello

sprite, dobbiamo usare una variabile per “ricordare” lo stato di riflessione

desiderato. Poi, ad ogni ciclo del main loop, assegneremo il valore di quella

variabile a REFP0 subito prima di disegnare lo schermo. Vedremo subito un

esempio di questa tecnica!

La lista dei registri volatili e non la trovi nell’appendice B.

Le Variabili a-z

Batari Basic ti mette a disposizione 26 variabili predefinite, nominate con una

singola lettera dalla a alla z, che possono contenere un valore da 0 a 255. Pensa a

loro come a 26 scatole vuote, etichettate da a a z, pronte per essere usate.

Una variabile è un contenitore per un'informazione che cambia durante l'esecuzione

del gioco. La posizione del giocatore, il suo punteggio, il numero di vite rimaste, il

tempo su un timer: tutti questi sono valori che devono essere costantemente

aggiornati.

L'Assegnazione (=): Mettere un Valore nella Scatola

L'operazione con cui si inserisce o si aggiorna un valore in una variabile si chiama

assegnazione. In Batari Basic (e in quasi tutti i linguaggi di programmazione),

l'assegnazione è rappresentata dal simbolo di uguale (=), ma il suo significato è

molto diverso da quello matematico.

In programmazione, il segno = non significa "è uguale a", ma piuttosto "riceve il

valore di". È un'azione, un ordine che dice al computer: "Calcola tutto quello che c'è

a destra e metti il risultato finale nella variabile che si trova a sinistra".

Vediamo questo processo in azione, passo dopo passo, immaginando di eseguire le

seguenti operazioni:

 a = 4 ; Metti il numero 4 nella scatola 'a'.

 b = a ; Prendi il valore che c'è dentro 'a' (che è 4) e copialo nella scatola 'b'.

 a = a + 1 ; Calcola a+1 e metti il risultato in a

Assegnazione Semplice:

 a = 4 ; Metti il numero 4 nella scatola 'a'.

La variabile a ora contiene il valore 4.

Assegnazione da un'altra Variabile:

 b = a ; Prendi il valore che c'è dentro 'a' (che è 4) e copialo nella scatola 'b'.

Pagina 35 di 236

Ora sia a che b contengono il valore 4.

Assegnazione con Calcolo (L'operazione più importante!):

 a = a + 1

Questa riga è il cuore della programmazione e va letta in due tempi, sempre da

destra verso sinistra.

Calcola la parte destra: Il computer prende il valore attuale di a (che è 4), ci

aggiunge 1 e ottiene il risultato 5.

Assegna alla parte sinistra: Il computer prende questo risultato finale (5) e lo "salva"

nella variabile a, sovrascrivendo il vecchio valore.

Dopo questa operazione, a conterrà 5, mentre b conterrà ancora 4.

Assegnazione con Espressioni Complesse:

 c = (a + b) * 2

Anche qui, il processo è lo stesso:

Prendi il valore di a (5)

Prendi il valore di b (4).

Calcola l'espressione tra parentesi: 5 + 4 = 9.

Moltiplica il risultato per 2: 9 * 2 = 18.

Metti il risultato finale (18) nella variabile c.

Pensa sempre al = come a una freccia che va da destra a sinistra (←). Prima il

computer risolve completamente l'espressione a destra, trasformandola in un singolo

numero, e solo alla fine deposita quel numero nella variabile a sinistra. Capire a

fondo questo meccanismo è la chiave per controllare il flusso e lo stato del tuo

gioco.

Modifichiamo il nostro codice per gestire correttamente la riflessione.

 rem Sprite che si specchia, clamp ai bordi

 set romsize 2k

 rem 'a' memorizza lo stato di riflessione (0=normale, 8=specchiato)

 a = 0

 rem posizione iniziale x del player0

 player0x = 80

main

 rem --- Definizione Grafica ---

 player0:

 %01111100

 %00111111

 %01111100

end

 rem --- Logica di Movimento e Riflessione ---

 if joy0left && player0x > 8 then player0x = player0x - 1 : a = 0

 if joy0right && player0x < 152 then player0x = player0x + 1 : a = 8

 rem --- Inizializzazione Registri prima del disegno ---

Pagina 36 di 236

 REFP0 = a ; Applica lo stato di riflessione memorizzato in 'a'

 COLUP0 = $1E ; colore del player0 (giallo brillante)

 player0y = 50 ; posizione verticale (per ora fissa)

 COLUBK = $86 ; colore di sfondo (blu ciano)

 rem --- Disegno ---

 drawscreen

 goto main

Analizziamo il nuovo codice:

 a = 0: All’inizio del programma, inizializziamo la nostra variabile a a 0. Questo significa

che lo sprite inizierà guardando nella sua direzione normale (in questo caso, a sinistra).

 if joy0left ... : a = 0: Quando ci muoviamo a sinistra, oltre a cambiare la posizione

player0x, impostiamo la nostra variabile di stato a a 0. Lo sprite non deve essere riflesso.

 if joy0right ... : a = 8: Quando ci muoviamo a destra, impostiamo la nostra variabile a a

8. Questo “ricorda” al programma che lo sprite dovrebbe essere specchiato. Il valore 8 è

il numero che attiva la riflessione orizzontale in REFP0.

 REFP0 = a: Questa è la riga cruciale. Ad ogni singolo ciclo del main loop, poco prima di

chiamare drawscreen, diciamo al registro REFP0 di assumere il valore che abbiamo

salvato nella nostra variabile a. Se a è 0, non ci sarà riflessione. Se a è 8, lo sprite verrà

specchiato per quel frame. In questo modo, l’effetto diventa stabile e persistente.

Premi F5. Ora la tua navicella si gira correttamente nella direzione in cui si muove, e rimane

girata! Hai appena imparato una delle tecniche fondamentali per gestire gli stati grafici sull’Atari

2600.

Movimento Verticale e Diagonale

Ora che hai il pieno controllo, sperimenta con il movimento.

Movimento Verticale: Aggiungi la logica per muovere lo sprite su e giù. Ricorda di

usare player0y e di aggiungere il clamping anche per i bordi superiore e inferiore (i

limiti sono circa 10 e 90).

La Sfida della Diagonale: Riesci a far muovere lo sprite in diagonale?

(Suggerimento: Devi controllare se due direzioni sono premute

contemporaneamente, ad esempio if joy0up && joy0right then ...).

Cambia Velocità: Come potresti far muovere lo sprite più velocemente? Prova a

cambiare player0x = player0x + 1 in player0x = player0x + 2

Pagina 37 di 236

Capitolo 4 – Costruire lo Scenario: Il Playfield

Il nostro eroe si muove liberamente, ma fluttua in uno spazio vuoto e senza confini.

Un’avventura ha bisogno di un mondo da esplorare. Ha bisogno di muri, pavimenti, piattaforme,

labirinti e ostacoli. In questo capitolo impareremo a usare uno degli strumenti più potenti e

creativi dell’Atari 2600: il Playfield. Il Playfield è il nostro set di mattoncini digitali, una griglia

su cui possiamo disegnare lo sfondo statico del nostro gioco.

4.1 – La Geometria del Playfield
A differenza degli sprite (come player0), che sono oggetti dinamici e mobili, il Playfield è una

“tela” fissa. Ha delle caratteristiche molto particolari:

• È a bassa risoluzione: È una griglia di blocchi larghi e squadrati. Ogni blocco del

Playfield è largo 4 pixel e alto 8 pixel.

• Non copre tutto lo schermo: Per limiti hardware e di batari basic, il Playfield occupa

solo la parte centrale dello schermo. Le fasce laterali, superiori e inferiori appartengono

al “background” o allo score (punteggio) e non possono essere utilizzate. Qui sotto un

esempio che mostra le dimensioni massime del playfield (in verde) rispetto alle

dimensioni massime dello schermo (in grigio scuro).

Per disegnare questo sfondo verde rettangolare, usiamo un blocco di codice che inizia con

l’etichetta playfield: e finisce con end.

Le Sottili Linee “Vuote” nel Playfield

Hai notato quelle sottili linee orizzontali che separano le righe di mattoncini del

playfield:? Non è un errore, ma una caratteristica intrinseca dell'hardware dell'Atari

2600. Il chip TIA, per ragioni di timing e semplicità hardware, inserisce

automaticamente una linea vuota di 1 pixel (del colore di sfondo, COLUBK) tra una

riga di Playfield e la successiva. Questo crea l'effetto visivo di "mattoni" separati da

una fuga, simile a un muro di mattoni reale. Esistono tecniche avanzate per

eliminare queste linee di separazione ma invece di vederle come un limite,

considerale un elemento stilistico caratteristico dell'estetica Atari 2600. Molti giochi

classici le hanno sfruttate per dare ai loro scenari un aspetto più strutturato e

definito.

Pagina 38 di 236

4.2 – La Nostra Prima Stanza
Costruiamo una semplice cornice, una “stanza” che contenga il nostro eroe. La struttura del

nostro codice cambierà leggermente: d’ora in poi, definiremo la grafica all’inizio del file, per

avere una migliore organizzazione.

 rem Il Mondo di Mattoni Digitali

 set romsize 2k

 a = 0 ; Variabile per la riflessione dello sprite

 rem --- Definizioni Grafiche ---

 player0:

 %01111100

 %00111111

 %01111100

end

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 rem --- Posizione iniziale del giocatore ---

 player0x = 80

 player0y = 50

main

 rem --- Inizializzazione Registri per il frame ---

 COLUBK = $04 ; sfondo: Grigio scuro

 COLUPF = $B6 ; playfield: Verde giungla

 COLUP0 = $1E ; player: Giallo brillante

 REFP0 = a ; Applica lo stato di riflessione

 rem --- Logica di Gioco ---

 if joy0left && player0x > 18 then player0x = player0x - 1 : a = 8

Pagina 39 di 236

 if joy0right && player0x < 142 then player0x = player0x + 1 : a = 0

 rem --- Disegno ---

 drawscreen

 goto main

Cosa significano “X” e “.”? All’interno del blocco playfield:, questi simboli sono i nostri

mattoni: “X” significa “blocco acceso” ovvero disegna un mattone solido usando il colore di

COLUPF. “.” significa “blocco spento” ovvero lascia quell’area trasparente, mostrando il colore

di sfondo di COLUBK.

Premi F5 per compilare e lanciare il programma. Dovresti vedere il tuo personaggio all’interno

di una cornice verde. Hai appena costruito la tua prima struttura! Prova a muoverti: noterai che il

clamping ora ha più senso, perché impedisce allo sprite di toccare i muri.

Fuori o dentro del main?

Hai notato che abbiamo spostato i blocchi player0: e playfield: all'inizio del file,

fuori dal main loop? C'è una ragione precisa e legata all'efficienza.

Definizioni Statiche: se nessuno le modifica, il compilatore Batari Basic necessita

di leggere le definizioni di grafica (player0:, playfield:) una sola volta. Non è

necessario (né efficiente) che il programma torni a leggere queste definizioni 60

volte al secondo. Posizionarle fuori dal main loop ci aiuta a mantenere la logica del

gioco (quella che cambia ad ogni frame) separata dalle risorse che sono “statiche”.

Registri Persistenti: Lo stesso principio vale per i registri TIA che non sono

volatili. Ad esempio, una volta che hai impostato il colore di sfondo (COLUBK) nel

tuo main loop, l'hardware non dimenticherà questo valore. Potremmo spostare

l'assegnazione di COLUBK (e dei registri non volatili che non cambiano mai, come

il colore del Playfield COLUPF e del Player COLUP0) in una sezione di

inizializzazione all'inizio del programma, fuori dal ciclo main. In questo modo,

eseguiamo l'operazione costosa di assegnazione solo una volta, risparmiando cicli

preziosi in ogni frame!

Se un'informazione (come la grafica o un colore) non deve cambiare durante il

gioco, definiscila il più lontano possibile dal cuore pulsante del main loop per

snellire il tuo codice e risparmiare preziosa CPU!

4.3 – Davanti o Dietro? La Priorità con CTRLPF
Hai notato? Il tuo sprite si muove davanti ai muri del Playfield. Questo è il comportamento di

default. Ma cosa succede se vuoi che il tuo personaggio passi dietro a un pilastro o a un albero

per creare un effetto di profondità?

Puoi farlo! C’è un altro registro magico nel TIA chiamato CTRLPF (ConTRoL PlayField), che

agisce come un interruttore di priorità.

Aggiungi questa riga nella sezione di inizializzazione del tuo main loop, insieme agli altri

registri:

Pagina 40 di 236

 CTRLPF = %00000100

Come funziona? Il valore %00000100 “accende” un bit specifico nel registro CTRLPF che dice

al TIA: “Disegna i blocchi del Playfield sopra gli sprite”. Per tornare al comportamento normale,

basta impostare CTRLPF = 0.

Premi F5. Ora, quando muovi lo sprite sopra un blocco X del Playfield, scomparirà dietro di

esso! I blocchi del Playfield hanno la priorità. Questa tecnica è fondamentale per dare profondità

e un aspetto più “reale” ai tuoi mondi di gioco.

4.4 – Scontrarsi con i Muri: La Funzione collision
Il nostro eroe può passare dietro i muri, ma non possiamo ancora usarli come ostacoli solidi.

Come facciamo a sapere se il nostro sprite sta toccando un muro?

Usando un’altra domanda speciale che possiamo fare al Batari Basic: il comando collision().

Questo comando ci permette di sapere se due oggetti grafici si stanno toccando, restituendo

“vero” se c’è un contatto. La sua sintassi è: if collision(oggettoA, oggettoB) then ...

Quando un personaggio si muove velocemente, potrebbe “passare attraverso” un muro per un

singolo frame. Per creare collisioni a prova di bomba, si usa una tecnica tanto semplice quanto

efficace: invece di respingere il giocatore, lo blocchiamo riportandolo all’ultima posizione

“sicura”.

4.5 – Muri Solidi con la Tecnica “Salva e Ripristina”
Mettiamo in pratica la gestione delle collisioni. Avremo bisogno di due variabili per salvare

l’ultima posizione sicura del giocatore prima di ogni movimento. Ecco come fare:

1. Salva: All’inizio del main_loop, si salvano le coordinate del giocatore in x e y.

2. Muovi: Permetti al giocatore di muoversi come al solito.

3. Controlla e Ripristina: Dopo drawscreen, si controlla se c’è una collisione. Se sì, si riporta le

coordinate del giocatore ai valori salvati in x e y.

Ecco il codice completo e funzionante.

 rem Il Mondo di Mattoni Digitali - con collisioni!

 set romsize 2k

 a = 0 ; Variabile per la riflessione dello sprite

 rem --- Definizioni Grafiche ---

 player0:

 %01111100

 %00111111

 %01111100

end

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X..............................X

 X..............................X

Pagina 41 di 236

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 rem --- Posizione iniziale del giocatore ---

 player0x = 80

 player0y = 50

main

 rem 1. SALVA la posizione sicura

 x = player0x

 y = player0y

 rem --- Inizializzazione Registri ---

 COLUBK = $04 ; Grigio scuro

 COLUPF = $B6 ; Verde giungla

 COLUP0 = $1E ; Giallo brillante

 REFP0 = a ; Applica lo stato di riflessione

 rem 2. MUOVI il personaggio

 if joy0left && player0x > 18 then player0x = player0x - 1 : a = 8

 if joy0right && player0x < 142 then player0x = player0x + 1 : a = 0

 if joy0up && player0y > 10 then player0y = player0y - 1

 if joy0down && player0y < 85 then player0y = player0y + 1

 rem --- Disegno ---

 drawscreen

 rem 3. CONTROLLA e RIPRISTINA

 if collision(player0, playfield) then player0x = x : player0y = y

 goto main

Premi F5. Prova a sbattere contro i muri da qualsiasi direzione. Vedrai che il tuo personaggio si

ferma di colpo, come se fossero solidi. Hai appena implementato la fisica di base del tuo mondo!

Pagina 42 di 236

"Racing the Beam" e l'Ordine degli Eventi

Come fa l'Atari 2600 a sapere che due oggetti si toccano? La risposta è legata al

modo stesso in cui la console disegna l'immagine sullo schermo.

Come abbiamo accennato, l'Atari 2600 non ha abbastanza memoria per costruire

un'intera immagine e poi inviarla al televisore. Deve letteralmente "inventare"

l'immagine riga per riga, in perfetta sincronia con il raggio di elettroni (il "beam")

del televisore. Questo processo è chiamato "Racing the Beam" (correre contro il

raggio).

Il chip TIA non si limita a disegnare; mentre il raggio passa su un pixel, il

TIA controlla se più di un oggetto sta cercando di essere disegnato in quel preciso

punto. Se questo accade, il TIA "alza una bandierina", ovvero imposta un bit di

collisione nel suo hardware.

Perché collision() va dopo drawscreen?

Prima di drawscreen: I bit di collisione contengono ancora le informazioni relative

al frame precedente. La CPU non ha ancora chiesto al TIA di disegnare nulla di

nuovo, quindi il TIA non ha avuto modo di rilevare nuove collisioni basate sulle

nuove posizioni degli oggetti.

Durante drawscreen: La CPU passa le nuove coordinate (player0x, player0y, ecc.) al

TIA. Mentre il TIA disegna il nuovo frame, riga per riga, aggiorna i suoi bit di

collisione in tempo reale.

Dopo drawscreen: I bit di collisione del TIA sono finalmente aggiornati con le

informazioni del frame che hai appena visto disegnare. Questo è il momento giusto

per interrogare l'hardware con la funzione collision() e ottenere una risposta

accurata.

Pensa al main loop in questo ordine logico:

Calcola: Aggiorna le posizioni degli oggetti.

Disegna: Chiama drawscreen per far sì che il TIA disegni il nuovo frame e rilevi le

collisione.

Controlla: Chiama collision() per leggere i risultati del disegno appena completato.

Se inverti questo ordine, il tuo gioco avrà sempre un frame di ritardo nel rilevare le

collisioni, causando bug e comportamenti imprevedibili.

Libera il tuo Architetto Interiore

Ora che i muri sono solidi, è il momento di renderli più interessanti.

Costruisci un Labirinto: Modifica il blocco playfield: per creare un semplice

labirinto con dei corridoi.

Pagina 43 di 236

Capitolo 5 – La Voce della Console: Suoni ed Effetti Speciali

Il nostro mondo ora ha un aspetto: c’è un eroe, ci sono dei muri, c’è un’avventura che aspetta di

essere vissuta. Ma è un’avventura silenziosa. Manca il beep di un laser, il boop di un oggetto

raccolto, il crunch di una collisione. Un gioco senza suono è un gioco a metà.

In questo capitolo, impareremo a dare una voce all’Atari 2600, manipolando i suoi registri audio

per creare effetti sonori. Nonostante la sua apparente semplicità, il chip TIA nasconde un

generatore di suoni sorprendentemente versatile. È ora di fare un po’ di rumore!

5.1 – L’Anatomia del Suono Atari
Il TIA, il nostro chip “artista”, non si occupa solo della grafica. È anche un musicista. Ha due

canali audio indipendenti (Canale 0 e Canale 1), il che significa che può produrre due suoni

diversi contemporaneamente.

Ogni canale è controllato da un set di tre registri, tre “manopole” che dobbiamo regolare per

produrre un suono:

 AUDV (Audio Volume): La Manopola del Volume. Controlla quanto forte è il suono,

con un valore da 0 (silenzio totale) a 15 (volume massimo). Per il Canale 0 si usa

AUDV0, per il Canale 1 AUDV1.

 AUDC (Audio Control): La Manopola del Timbro. Controlla la “voce” o la “texture”

del suono, con un valore da 0 a 15. Ogni numero seleziona una forma d’onda diversa,

producendo suoni che vanno da toni puri e cristallini (come un flauto) a suoni distorti e

“rumorosi” (come il motore di un’auto o un’esplosione).

 AUDF (Audio Frequency): La Manopola dell’Intonazione. Controlla la frequenza,

ovvero quanto una nota è acuta o grave, con un valore da 0 a 31. Attenzione: qui le cose

funzionano al contrario di come ci si aspetterebbe! Valori bassi producono suoni più

acuti, mentre valori alti producono suoni più gravi.

Per produrre un suono sul Canale 0, dobbiamo impostare tutti e tre i registri: AUDV0, AUDC0, e

AUDF0.

Nell’appendice D troverai tutte le informazioni necessarie per scegliere i valori che fanno al caso

tuo!

I Suoni non si Fermano da Soli!

I registri audio sono persistenti. Una volta che hai impostato un suono, il TIA

continuerà a produrlo all’infinito, anche nei frame successivi! È come premere un

tasto di un organo che non torna più su. Per fermare un suono, l’unico modo è

riportare il suo volume a zero: AUDV0 = 0. Ricordalo sempre!

5.2 – Il “Sound Timer”: Creare Effetti Sonori a Tempo
Come facciamo a creare un suono breve, come quello di uno sparo, che duri solo una frazione di

secondo e poi si fermi? Non possiamo semplicemente accenderlo e spegnerlo subito dopo,

perché il nostro main loop è troppo veloce!

La soluzione è un pattern di codice fondamentale: il “Sound Timer”. È un semplice timer

software, un contatore alla rovescia che usa una delle nostre variabili. L’idea è questa:

Pagina 44 di 236

• Quando vogliamo che il suono inizi, attiviamo l’audio e carichiamo una variabile (il

nostro timer) con un numero (es. 10). Questo numero rappresenta per quanti frame il

suono durerà.

• Ad ogni ciclo del main loop, decrementiamo il timer di 1.

• Quando il timer raggiunge lo zero, spegniamo il suono impostando il volume a 0.

Prima di vedere un esempio concreto, introduciamo un concetto importantissimo: le subroutine.

5.3 – L’Arte dell’Ordine: gosub e return
Man mano che i nostri programmi crescono, il main loop può diventare disordinato. Per

mantenere il codice pulito e organizzato, useremo le subroutine. Una subroutine è un blocco di

codice separato che esegue un compito specifico (come “sparare” o “riprodurre un suono”). Per

usare una subroutine abbiamo bisogno di due istruzioni fondamentali, gosub e return:

• gosub <etichetta>: Dice al programma: “Vai a eseguire il codice che si trova all’etichetta

<etichetta>, ma ricorda da dove sei partito”.

• return: Si mette alla fine della subroutine e dice: “Ho finito, torna al punto da cui eri

partito”.

Questo ci permette di organizzare il codice in blocchi logici e riutilizzabili.

5.4 –Collisione con Suono
Prendiamo il codice del capitolo precedente e aggiungiamo un effetto sonoro ogni volta che il

giocatore si scontra con un muro. Avremo bisogno di una nuova variabile (useremo s) per il

nostro sound timer. Già che ci siamo cambiamo un po’ il playfield.

 rem Collisione con Suono

 set romsize 2k

 a = 0 ; Variabile per la riflessione

 s = 0 ; Variabile per il sound timer (s=sound)

 rem --- Definizioni Grafiche ---

 player0:

 %01111100

 %00111111

 %01111100

end

 playfield:

 XXXXXXXXXXXXXXXXXXXX

 X.....X............X

 X.....X............X

 X....XX.........X..X

 X...............X..X

 X............XXXX..X

 X..................X

 X...X..............X

 XXXXX.........XXXXXX

 X.............X.....

 XXXXXXXXXXXXXXX.....

end

 rem --- Posizione iniziale player0 ---

 player0x = 80

 player0y = 50

main

 rem 1. SALVA la posizione sicura

 x = player0x

 y = player0y

Pagina 45 di 236

 rem --- Gestione del Sound Timer ---

 if s > 0 then s = s - 1

 if s = 0 then AUDV0 = 0 ; Spegni il suono quando il timer scade

 rem --- Inizializzazione Registri ---

 COLUBK = $04 ; Grigio scuro

 COLUPF = $B6 ; Verde giungla

 COLUP0 = $1E ; Giallo brillante

 REFP0 = a ; Applica lo stato di riflessione

 rem 2. MUOVI il personaggio

 if joy0left && player0x > 18 then player0x = player0x - 1 : a = 8

 if joy0right && player0x < 142 then player0x = player0x + 1 : a = 0

 if joy0up && player0y > 10 then player0y = player0y - 1

 if joy0down && player0y < 85 then player0y = player0y + 1

 rem --- Disegno ---

 drawscreen

 rem 3. CONTROLLA, RIPRISTINA e SUONA

 if collision(player0, playfield) then player0x = x : player0y = y : gosub play_hit_sound

 goto main

 rem --- SUBROUTINE PER IL SUONO ---

play_hit_sound

 s = 5 ; Durata del suono: 5 frame

 AUDV0 = 10 ; Volume

 AUDC0 = 2 ; Timbro "rombo" cupo

 AUDF0 = 30 ; Intonazione molto grave

 return

Premi F5. Hai appena sincronizzato grafica, input e audio! Come vedi, la subroutine

play_hit_sound viene chiamata quando avviene la collisione attraverso gosub. Vengono eseguite

le istruzioni “dentro” a play_hit_sound che si conclude con return che riporta il flusso di

esecuzione subito dopo il gosub play_hit_sound (ovvero l’istruzione immediatamente successiva

sarà goto main).

Si può usare un gosub dentro ad una subroutine chiamata da un gosub?

Si. Ma non andare mai oltre tre “livelli” di gosub o il programma potrebbe non

funzionare correttamente. Ad esempio questo codice (due livelli di gosub) è

corretto:

main

 ; ... logica del gioco ...

 gosub sub1 ; viene eseguita tutta la sub1

 drawscreen

 goto main

sub1

 ; ... logica della subroutine 1 ...

 gosub sub2 ; viene eseguita tutta la sub2

 ; ... continuazione logica della subroutine 1 ...

 return ; ritorna al main

sub2

Pagina 46 di 236

 ; ... logica della subroutine 2 ...

 return ; ritorna alla sub 1

Diventa un Sound Designer!

È il momento di sperimentare con i suoni.

Sperimenta con il Timbro: Nella subroutine, prova a cambiare il valore di

AUDC0. Usa AUDC0 = 12 per un suono più puro, da “raccolta oggetto”. Usa

AUDC0 = 14 per un ronzio, ottimo per un motore.

Cambia l’Intonazione: Gioca con AUDF0. Prova valori più alti (es. 20) per un

suono più grave, o più bassi (es. 5) per un suono ancora più acuto.

Effetto Sonoro di Collisione: Riesci a produrre un suono diverso in base alla

direzione del player0?

Pagina 47 di 236

Capitolo 6 – Animazione a Frame Multipli

Il nostro eroe si muove, esplora mondi e interagisce con gli oggetti. Ma c’è ancora qualcosa che

non va: si muove in modo rigido, come un pezzo degli scacchi. Manca l’illusione della vita, quel

dettaglio che trasforma una semplice forma in un personaggio che corre, salta o attacca.

In questo capitolo, impareremo come animare gli oggetti grafici.

6.1 – Oltre lo Sprite Statico
Come funziona un cartone animato? Non è una singola immagine che si muove, ma una rapida

successione di disegni leggermente diversi tra loro. Il nostro cervello, ingannato da questa

velocità, percepisce il movimento come fluido.

In Batari Basic, possiamo fare esattamente la stessa cosa. Invece di avere un solo blocco

player0:, possiamo definirne diversi, ognuno rappresentante un “fotogramma” (o frame) della

nostra animazione.

L’idea di base:

 Disegniamo diversi sprite per il nostro personaggio (es. gamba destra avanti, gambe

unite, gamba sinistra avanti).

 Nel nostro main loop, mostriamo questi sprite in rapida successione.

 Il risultato: il nostro eroe sembrerà correre!

6.2 – La Tecnica del “Cartone Animato”: Alternare le Immagini con gosub
Il modo più semplice per gestire più frame è creare una subroutine grafica per ogni disegno.

Immaginiamo di voler creare un’animazione di corsa a due frame. Possiamo definire

anim_frame_1 e anim_frame_2, ognuna contenente un blocco player0: diverso, e chiamarle con

gosub.

Ma come decidiamo quale subroutine chiamare? Se le alternassimo a ogni ciclo del main loop,

l’animazione sarebbe troppo veloce e tremolante (60 cambi al secondo!). Abbiamo bisogno di un

metronomo.

6.3 – Il Metronomo del Codice: Usare i Timer per il Ritmo
Per controllare la velocità dell’animazione, usiamo un semplice contatore, una variabile che

incrementiamo a ogni ciclo del main loop. La struttura di base del codice è la seguente:

 f = 0 ; Variabile per il timer di animazione (f=frame)

main_loop

 rem ... logica del gioco ...

 f = f + 1

 gosub animate_player

 drawscreen

 goto main_loop

animate_player

 rem Se il timer è sotto 10, mostra il primo frame

 if f < 10 then gosub anim_frame_1

 rem Se il timer è tra 10 e 19, mostra il secondo frame

 if f >= 10 then gosub anim_frame_2

 rem Se il timer arriva a 20, azzeralo per ricominciare il ciclo

 if f = 20 then animation_timer = 0

 return

Pagina 48 di 236

anim_frame_1

 rem ... disegno animazione 1 ...

 return

anim_frame_2

 rem ... disegno animazione 2 ...

 return

Questo codice mostra il frame_1 per 10 cicli di gioco, poi il frame_2 per altri 10 cicli, e poi

ricomincia. L’animazione ora ha un ritmo controllato!

6.4 – Creare un’Animazione di Corsa
Mettiamo tutto insieme. Modifichiamo il nostro programma di movimento per far correre il

nostro personaggio, aggiungendo anche un frame “statico” per quando è fermo. Vogliamo:

• Creare due frame di animazione per la corsa e uno per quando il personaggio è fermo.

• Usare un timer per alternare i frame della corsa a un ritmo credibile.

• Mostrare il frame statico e azzerare il timer quando il personaggio si ferma.

 rem Animazione di Corsa

 set romsize 2k

 a = 0 ; Variabile per la riflessione

 f = 0 ; Variabile per il timer di animazione (f=frame)

main_loop

 gosub handle_input

 gosub animate_player

 player0x = x

 player0y = y

 COLUP0 = $EA

 COLUBK = $84

 REFP0 = a

 drawscreen

 goto main_loop

 rem --- SUBROUTINES DI GIOCO ---

handle_input

 rem Posizioni iniziali se non definite

 if x = 0 then x = 80 : y = 50

 if joy0left && x > 8 then x = x - 1 : a = 8

Pagina 49 di 236

 if joy0right && x < 152 then x = x + 1 : a = 0

 return

animate_player

 rem Se il giocatore si muove, incrementa il timer

 if joy0left || joy0right then f = f + 1

 rem Se il giocatore è fermo, mostra il frame statico e azzera il timer

 if !joy0left && !joy0right then gosub anim_frame_static : f = 0 : return

 rem Logica di alternanza frame

 if f < 10 then gosub anim_frame_1

 if f >= 10 then gosub anim_frame_2

 if f >= 20 then f = 0 ; Azzera il timer per ricominciare il ciclo

 return

 rem --- DEFINIZIONI GRAFICHE ---

anim_frame_static ; Frame per personaggio fermo

 player0:

 %0010100

 %0010100

 %0010100

 %1001001

 %0111110

 %0001000

 %0011100

 %0011100

end

 return

anim_frame_1 ; Corsa - Frame 1

 player0:

 %0010100

 %0010100

 %0010100

 %1001000

 %0111111

 %0001001

 %0011100

 %0011100

end

 return

Pagina 50 di 236

anim_frame_2 ; Corsa - Frame 2

 player0:

 %0010000

 %0010000

 %0010100

 %1001001

 %0111110

 %0001000

 %0011100

 %0011100

end

 return

Premi F5. Il tuo personaggio ora è fermo, in una posa statica. Ma quando spingi il joystick a dest

ra o a sinistra, inizierà a “correre”, alternando i due frame di animazione!

Simulare IF-ELSE con goto e le Etichette

Hai imparato a usare if … then gosub… per eseguire una subroutine se una

condizione è vera. Ma cosa succede se vuoi fare una cosa se la condizione è vera, e

un’altra cosa completamente diversa se è falsa? I linguaggi moderni usano una

struttura chiamata if-else per questo. Sebbene in Batari Basic esiste la possibilità di

usare else, è meglio non usarlo perché il suo funzionamento non è sempre corretto.

Tuttavia possiamo ottenere lo stesso risultato combinando if, goto e le etichette

(label).

Immagina di voler eseguire pezzi di codice diversi in base al valore della variabile a,

senza scomodare i gosub. Ecco come fare:

 if a = 0 then goto case_a_0

 if a = 1 then goto case_a_1

 ; .. altri casi ..

 goto end_case_a ; se nessuna condizione vera

 ; salto oltre il codice per i vari casi a=0, a=1, ...

case_a_0

 ;... codice per il caso a = 0

 goto end_case_a

case_a_1

 ;... codice per il caso a = 1

 goto end_case_a

;... altri casi ...

end_case_a

 ; qui continua il codice del programma

Pagina 51 di 236

La tecnica consiste nel “saltare” ad un blocco di codice specifico per ogni

condizione che ci interessa. Basta utilizzare delle label con dei nomi diversi. Da tutti

i pezzi di codice poi si salta al punto dove prosegue il programma.

Sperimenta con le Tue Abilità di Animatore

Aggiungi più Frame: Riesci a creare un’animazione di corsa più fluida usando 3 o

4 frame invece di 2? Dovrai modificare la logica nella subroutine animate_player

per gestire più stati del timer.

Animazione Verticale: Il nostro eroe corre solo a destra e a sinistra. Prova a creare

un set di sprite completamente diverso per quando si muove in alto e in basso.

(Suggerimento: Avrai bisogno di un if joy0up || joy0down then ... e di nuove

subroutine grafiche).

Animazione di “Idle”: Molti giochi hanno un’animazione per quando il

personaggio è fermo (es. respira, guarda intorno). Modifica la subroutine

anim_frame_static per alternare due frame molto simili tra loro, dando l’impressione

che il personaggio sia vivo anche da fermo.

Pagina 52 di 236

Capitolo 7 – Progetto Guidato: “Fuga dal Castello Digitale”

In questo capitolo, creeremo un mini-gioco chiamato “Fuga dal Castello Digitale”. L’obiettivo è

semplice, ma per realizzarlo dovremo usare quasi tutto ciò che abbiamo imparato: la gestione

dell’input, una semplice IA, animazioni, suoni, collisioni, la gestione dello stato di gioco e…

un’altro oggetto grafico di cui parleremo nel dettaglio più avanti ma che ora ci serve, la “ball”!

7.1 – Fase 1: La Mappa del Tesoro – Pianificazione e Design
Prima di scrivere una sola riga di codice, un buon game designer pianifica gli elementi essenziali

del gioco.

• Genere: Mini-avventura a schermata singola.

• Obiettivo: Raccogliere una chiave per aprire una porta e fuggire.

• Personaggi:
– player0: L’Eroe, controllato dal giocatore, con animazioni di movimento.

– player1: Il Guardiano, un nemico animato con una semplice IA di

pattugliamento.

• Logica di Gioco:
– L’Eroe deve toccare la Chiave (rappresentata dall’oggetto ball) per raccoglierla,

con un suono di conferma.

– Una volta raccolta la Chiave, l’Eroe deve raggiungere la Porta (un’area del

castello) per vincere.

– Se il Guardiano tocca l’Eroe, il gioco finisce (Game Over).

– L’Eroe e il Guardiano producono suoni di passi. Le collisioni e gli eventi di

vittoria/sconfitta hanno effetti sonori dedicati.

7.2 – Fase 2: Le Fondamenta – Mappa delle Variabili e Grafica
La prima cosa da fare è pianificare come useremo le nostre preziose 26 variabili a singola lettera.

Assegnare a ogni lettera un ruolo chiaro fin dall’inizio è fondamentale per non perdersi. Poi

definiamo la grafica del playfield.

 rem Fuga dal Castello Digitale

 set romsize 4k ; Imposta la dimensione della cartuccia virtuale a 4 kilobyte, necessaria per co

ntenere tutto il codice.

 rem --- Mappa delle Variabili ---

 a = 0 ; Memorizza lo stato di riflessione dell'Eroe (0 = guarda a destra, 8 = guarda a sinistra

, specchiato).

 b = 0 ; Timer per l'animazione dell'Eroe. Un contatore che cicla per decidere quale frame di an

imazione mostrare.

 c = 0 ; Timer per l'animazione del Guardiano. Simile a 'b', ma per il nemico.

 d = 0 ; Direzione del Guardiano (0 = si muove a destra, 1 = si muove a sinistra). Usato dall'IA

 di pattugliamento.

 e = 0 ; Stato del gioco (gamestate): 0=Inizializza, 1=In Gioco, 2=Vittoria, 3=Sconfitta. Il "ce

rvello" del gioco.

 f = 0 ; Flag per la chiave: 0 = non posseduta, 1 = posseduta.

 i = 0 ; Flag di movimento: 1 se il giocatore sta muovendo il joystick, 0 se è fermo.

 s = 0 ; Sound Timer per il Canale Audio 0 (usato per l'Eroe).

 t = 0 ; Sound Timer per il Canale Audio 1 (usato per il Guardiano e le collisioni).

 x = 0 ; Posizione orizzontale (coordinata X) corrente dell'Eroe.

 y = 0 ; Posizione verticale (coordinata Y) corrente dell'Eroe.

 u = 0 ; Variabile temporanea per salvare l'ultima posizione X "sicura" dell'Eroe.

 v = 0 ; Variabile temporanea per salvare l'ultima posizione Y "sicura" dell'Eroe.

 z = 0 ; Posizione orizzontale (coordinata X) corrente del Guardiano.

 w = 0 ; Posizione verticale (coordinata Y) corrente del Guardiano.

 rem -- il playfield definisce la grafica statica del castello e non cambia durante il gioco --

 playfield:

Pagina 53 di 236

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X........................X

 X........................X

 X....XX.....................X..X

 X...........................X..X

 X........................XXXX..X

 X..............................X

 X...X..........................X

 XXXXX.....................XXXXXX

 X.........................X.....

 XXXXXXXXXXXXXXXXXXXXXXXXXXX.....

end

7.3 – Fase 3: La Macchina a Stati – Il Cervello del Gioco
Ora scriviamo il main_loop, il “centralino” che gestisce il flusso del gioco, e tutte le subroutine

di stato. Il main_loop controlla la variabile e (gamestate) e chiama la subroutine appropriata per

ogni stato del gioco.

main_loop ; Il cuore del gioco, un ciclo infinito che si ripete circa 60 volte al secondo.

 if e = 0 then gosub state_init_game ; Se il gioco è nello stato 0, esegui la routine di inizia

lizzazione.

 if e = 1 then gosub state_gameplay ; Se il gioco è nello stato 1, esegui la logica principale d

el gameplay.

 if e = 2 then gosub state_win ; Se il gioco è nello stato 2, mostra la schermata di vittor

ia.

 if e = 3 then gosub state_game_over; Se il gioco è nello stato 3, mostra la schermata di game o

ver.

 goto main_loop ; Torna all'inizio del ciclo per il prossimo frame.

 rem ========= SUBROUTINES DI STATO =========

state_init_game ; Questa subroutine viene eseguita solo una volta all'inizio di ogni partita.

 x = 30 : y = 80 ; Imposta la posizione di partenza dell'Eroe.

 z = 100 : w = 40 ; Imposta la posizione di partenza del Guardiano.

 f = 0 ; Resetta lo stato della chiave (non posseduta).

 e = 1 ; Cambia lo stato del gioco a "In Gioco".

 i = 0 ; Resetta il flag di movimento del giocatore.

 s = 0 ; Resetta i timer dei suoni.

 return ; Torna al main_loop.

state_gameplay ; Questa subroutine contiene tutta la logica del gioco attivo.

 gosub handle_input ; Legge il joystick e gestisce il movimento/animazione dell'Eroe.

 gosub update_enemy_ai ; Muove e anima il Guardiano.

 gosub update_sounds ; Aggiorna i timer dei suoni e li spegne se necessario.

 gosub draw_world ; Disegna tutti gli elementi grafici sullo schermo.

 gosub check_collisions ; Controlla tutte le interazioni tra gli oggetti.

 return ; Torna al main_loop.

state_win ; Schermata di vittoria.

 if s = 0 then gosub play_win_sound ; Suona l'effetto di vittoria, ma solo una volta.

 COLUBK = $9E ; Imposta lo sfondo a verde.

 player0y = 200 : player1y = 200 ; Nasconde i personaggi spostandoli fuori dallo schermo.

 if s > 1 then s = s - 1 else AUDV0 = 0 ; Fa durare il suono di vittoria per il suo tempo, poi l

o spegne.

 drawscreen ; Continua a disegnare lo schermo per evitare il "roll".

 if joy0fire then e = 0 ; Se il giocatore preme fuoco, riavvia il gioco tornando allo

stato di inizializzazione.

 return

state_game_over ; Schermata di Game Over.

 if s = 0 then gosub play_lose_sound ; Suona l'effetto di sconfitta, ma solo una volta.

 COLUBK = $44 ; Imposta lo sfondo a rosso.

 player0y = 200 : player1y = 200 ; Nasconde i personaggi.

 if s > 1 then s = s - 1 else AUDV0 = 0 ; Fa durare il suono di sconfitta per il suo tempo, poi

lo spegne.

 drawscreen ; Continua a disegnare lo schermo.

 if joy0fire then e = 0 ; Se il giocatore preme fuoco, riavvia il gioco.

 return

Pagina 54 di 236

7.4 – Fase 4: Dare Vita al Mondo – Input, IA, Suoni e Disegno
È il momento di riempire le subroutine di gioco. Iniziamo con l’input del giocatore, l’IA del

guardiano, la gestione dei suoni e il disegno del mondo.

 rem ========= SUBROUTINES DI GIOCO =========

handle_input

 rem -- salviamo la posizione attuale dell'eroe per la logica "salva e ripristina" --

 u = x : v = y

 i = 0 ; All'inizio di ogni frame, assumiamo che il giocatore sia fermo.

 rem -- Legge il joystick e aggiorna la posizione e la riflessione dell'Eroe --

 if joy0left && x > 0 then x = x - 1 : a = 8 : i = 1 ; Se premi sinistra e non sei al bordo, m

uoviti a sinistra, imposta la riflessione e il flag di movimento.

 if joy0right && x < 159 then x = x + 1 : a = 0 : i = 1 ; Se premi destra...

 if joy0up && y > 0 then y = y - 1 : i = 1 ; Se premi su...

 if joy0down && y < 95 then y = y + 1 : i = 1 ; Se premi giù...

 rem -- Gestisce l'animazione dell'Eroe e il suono dei passi --

 if i = 1 then b = b + 1 : if b > 20 then b = 0 ; Se l'eroe si sta muovendo, incrementa il suo t

imer di animazione.

 if i = 1 && s = 0 then gosub play_hero_step_sound ; Se si muove e il canale audio 0 è libero, r

iproduci il suono del passo.

 if i = 0 then b = 0 ; Se l'eroe è fermo, resetta il suo timer di animazione per mostrare il fra

me statico.

 return

update_enemy_ai

 rem -- Logica di pattugliamento semplice: si muove avanti e indietro tra z = 20 e 120 --

 if d = 0 then z = z + 1 ; Se la direzione è 0 (destra), incrementa la posizione X.

 if z > 120 then d = 1 ; Se raggiunge il limite destro, cambia direzione.

 if d = 1 then z = z - 1 ; Se la direzione è 1 (sinistra), decrementa la posizione X.

 if z < 20 then d = 0 ; Se raggiunge il limite sinistro, cambia direzione.

 rem -- Gestisce l'animazione del Guardiano e il suono dei passi --

 c = c + 1 : if c > 20 then c = 0 ; Incrementa il timer di animazione del guardiano.

 if t = 0 then gosub play_enemy_step_sound ; Se il canale audio 1 è libero, riproduci un passo

 return

update_sounds

 rem -- Gestisce i contatori alla rovescia per entrambi i canali audio --

 if s > 0 then s = s - 1 else AUDV0 = 0 ; Decrementa il timer del canale 0. Se arriva a 0, spegn

e il volume.

 if t > 0 then t = t - 1 else AUDV1 = 0 ; Decrementa il timer del canale 1. Se arriva a 0, spegn

e il volume.

 return

draw_world

 rem -- Seleziona e chiama la subroutine grafica corretta per l'Eroe in base al suo timer di ani

mazione 'b' --

 if b = 0 then gosub player0_static

 if b > 0 && b <= 10 then gosub player0_frame1

 if b > 10 then gosub player0_frame2

 rem -- Seleziona e chiama la subroutine grafica corretta per il Guardiano in base al timer 'c'

--

 if c <= 10 then gosub player1_frame1

 if c > 10 then gosub player1_frame2

 rem -- Posiziona la chiave (la 'ball') sullo schermo. Se è stata raccolta (f=1), la sposta fuor

i dall'area visibile --

 ballheight = 4 : if f = 0 then ballx = 120 : bally = 50 else bally = 150

 rem -- Aggiorna le posizioni finali degli sprite e imposta tutti i registri TIA prima di disegn

are --

 player0x = x : player0y = y : player1x = z : player1y = w

 COLUBK = $08 : COLUPF = $1A : COLUP0 = $AE : COLUP1 = $44 : REFP0 = a

Pagina 55 di 236

 drawscreen ; Comando che dice al TIA di disegnare l'intero frame.

 return

7.5 – Fase 5: Le Regole del Gioco – Collisioni e Logica
Infine, implementiamo la logica che controlla le interazioni: la collisione con il guardiano, l’urto

contro i muri, la raccolta della chiave e la fuga finale. E terminiamo con le subroutine dei suoni e

delle animazioni.

check_collisions

 rem -- Controlla se l'Eroe tocca il Guardiano. Se sì, suona un suono e imposta lo stato a Game

Over --

 if collision(player0, player1) then gosub play_hit_sound : e = 3 : s = 0

 rem -- Controlla se l'Eroe tocca i muri del Playfield. Se sì, ripristina la sua posizione e suo

na un suono --

 if collision(player0, playfield) then x = u : y = v : if t = 0 then gosub play_hit_sound

 rem -- Controlla se l'Eroe tocca la chiave (la 'ball'). Se sì, imposta il flag 'f' a 1 e suona

un suono --

 if f = 0 && collision(player0, ball) then f = 1 : gosub play_pickup_sound

 rem -- Controlla se l'Eroe, con la chiave in mano, raggiunge l'area della porta. Se sì, imposta

 lo stato a Vittoria --

 if f = 1 && x < 20 && y < 28 then e = 2 : s = 0

 return

 rem ====== SUBROUTINES AUDIO (impostano timer e registri audio per ogni effetto) ======

play_hero_step_sound

 s = 3 : AUDV0 = 8 : AUDC0 = 12 : AUDF0 = 25 : return

play_enemy_step_sound

 t = 3 : AUDV1 = 6 : AUDC1 = 14 : AUDF1 = 28 : return

play_hit_sound

 t = 10 : AUDV1 = 12 : AUDC1 = 2 : AUDF1 = 30 : return

play_pickup_sound

 s = 15 : AUDV0 = 15 : AUDC0 = 12 : AUDF0 = 10 : return

play_win_sound

 s = 20 : AUDV0 = 15 : AUDC0 = 12 : AUDF0 = 5 : AUDV1 = 0 : return

play_lose_sound

 s = 20 : AUDV0 = 15 : AUDC0 = 2 : AUDF0 = 25 : AUDV1 = 0 : return

 rem ====== SUBROUTINES GRAFICHE (contengono i dati binari per ogni frame di animazione) ======

player0_static ; Frame per l'Eroe quando è fermo.

 player0:

 %0010100

 %0010100

 %0010100

 %1001001

 %0111110

 %0001000

 %0011100

 %0011100

end

 return

player0_frame1 ; Primo frame dell'animazione di corsa dell'Eroe.

 player0:

 %0010100

 %0010100

 %0010100

 %1001000

 %0111111

 %0001001

 %0011100

 %0011100

Pagina 56 di 236

end

 return

player0_frame2 ; Secondo frame dell'animazione di corsa dell'Eroe.

 player0:

 %0010000

 %0010000

 %0010100

 %1001001

 %0111110

 %0001000

 %0011100

 %0011100

end

 return

player1_frame1 ; Primo frame dell'animazione del Guardiano.

 player1:

 %0010100

 %0010100

 %1010101

 %1011101

 %0111110

 %0001000

 %0111110

 %0011100

end

 return

player1_frame2 ; Secondo frame dell'animazione del Guardiano.

 player1:

 %1000001

 %0100010

 %0010100

 %0011100

 %0111110

 %1001001

 %1011101

 %0111110

end

 return

Premi F5. Il tuo gioco è ora completo e vivo! L’eroe e il guardiano si muovono, i suoni danno

vita all’azione e c’è un obiettivo chiaro.

La misteriosa ball

Oltre ai due player, l’Atari 2600 può gestire altri tre oggetti grafici semplici:

missile0, missile1 e, appunto, ball. La ball è un semplice rettangolo il cui colore è

legato a quello del Playfield (COLUPF). Possiamo controllarne la posizione (ballx,

bally) e le dimensioni. È perfetta per rappresentare oggetti come proiettili, chiavi o

tesori. Ne parleremo in dettaglio nel Capitolo 9. Per ora, ci basta sapere che è il

nostro tesoro da raccogliere.

Il Labirinto delle Variabili a-z

Hai notato quanto può essere difficile tenere traccia di cosa fa ogni variabile?

Benvenuto in una delle sfide centrali della programmazione “vecchia scuola”! Con

poca memoria a disposizione, i programmatori dovevano essere estremamente

metodici. Senza una “mappa” come quella che abbiamo scritto all’inizio, un

programma può diventare rapidamente un groviglio indecifrabile. Questo problema

della leggibilità è così sentito che Batari Basic offre una soluzione potente: il

comando dim. Con dim, possiamo dare alle nostre variabili dei nomi significativi

Pagina 57 di 236

(es. dim hero_x = a). Da quel momento in poi, nel codice potremo usare hero_x al

posto di a (ma sono la stessa variabile!) rendendolo più facile da leggere. Abbiamo

scelto di non usare dim in questo primo progetto per farti “toccare con mano” le

sfide originali, ma d’ora in poi lo useremo!

La Necessità di una ROM da 4K

Se avessimo usato all’inizio del programma set romsize 2k avremmo incontrato un

errore spaventoso nella finestra di OUTPUT, simile a questo:

-89 bytes of ROM space left …

error: Origin Reverse-indexed.

ERROR: 2600

basic compilation failed.

Questo errore indica il superamento del limite di memoria della cartuccia. Cosa

significa questo errore? All’inizio dei nostri programmi abbiamo sempre scritto set

romsize 2k. Questa direttiva dice al compilatore: “Prepara una cartuccia virtuale da 2

kilobyte (2048 byte)”. Il nostri programmi finora non sforavano i 2K. Ma “Fuga dal

Castello Digitale”, con le sue animazioni multiple, le subroutine per la logica e gli

effetti sonori, è diventato più grande. L’errore -89 (meno 89) bytes of ROM space

left è il modo del compilatore di dirti: “Ho finito lo spazio! Il tuo programma è 89

byte più grande di una cartuccia da 2K”. L’errore successivo (Origin Reverse-

indexed) è una conseguenza tecnica di questo sforamento.

La Soluzione: Una Cartuccia più Grande! Proprio come nel mondo reale, se un

gioco era troppo complesso per una cartuccia da 2K, gli sviluppatori ne usavano una

più capiente. La dimensione successiva più comune era quella da 4 kilobyte (4096

byte). Per risolvere il nostro problema, basta comunicare al compilatore che

vogliamo usare una cartuccia più grande con set romsize 4k. Ora premi F5. Il gioco

compilerà senza errori e ti verrà indicato quanti byte di preziosa memoria ROM ti

rimangono ancora (1951 bytes)!

2600 Basic compilation complete. 1951 bytes of ROM space left

Gestire le dimensioni della ROM è una parte fondamentale del lavoro di un

programmatore dell'Atari 2600. In questo manuale non andremo oltre i 4K, ma

potrai trovare informazioni interessanti su ROM più grandi e altro nel capitolo 13.

Un altro errore “strano” : Branch out of range

Man mano che i tuoi giochi diventano più complessi, con molte subroutine e una

logica articolata, potresti incontrare un errore di compilazione apparentemente

strano, simile a questo: “Error: Branch out of range”.

Questo errore non significa che il tuo codice sia sbagliato, ma che stai chiedendo al

programma di fare un "salto" (goto o gosub) troppo lungo.

La soluzione è inserire set smartbranching on immediatamente dopo set romsize:

 set smartbranching on

A questo punto ci penserà batari basic a permettere ai tuoi goto e gosub di “saltare

lontano”.

Pagina 58 di 236

Pagina 59 di 236

Parte 2: Tecniche Avanzate e Segreti dell'Hardware

Prototipo della console Atari 2600 esposto al Computer History Museum. Foto: Pargon, CC BY 2.0

Pagina 60 di 236

Pagina 61 di 236

Capitolo 8 – Alias, palla e missili

In questo capitolo, impareremo a scrivere codice più pulito e a sfruttare altri oggetti grafici che

l’Atari 2600 ci mette a disposizione. Passeremo da semplici avventurieri a veri ingegneri del

codice.

8.1 – Organizzare il Codice: Gli Alias con dim
Nel capitolo precedente, hai sperimentato in prima persona la difficoltà di tenere traccia di cosa

fa ogni variabile da a a z. Un piccolo errore di distrazione, e un gioco può smettere di funzionare

in modi misteriosi. Per risolvere questo problema e rendere il nostro codice infinitamente più

leggibile, Batari Basic ci offre un comando fondamentale: dim.

dim (che sta per dimension) ci permette di creare un alias, ovvero un soprannome, per una delle

variabili a singola lettera.

La sintassi è: dim nome_significativo = lettera

 rem Esempio di utilizzo di 'dim'

 dim hero_x = a

 dim hero_y = b

 dim has_key = c

 rem Inizializzazione

 hero_x = 80

 hero_y = 50

 has_key = 0

main

 if joy0left then hero_x = hero_x - 1

 ; ...

Come funziona? Dopo aver dichiarato dim hero_x = a, ogni volta che userai hero_x nel tuo

codice, il compilatore lo sostituirà automaticamente con a. Per te, il codice diventa leggibile

come un libro; per la console, non cambia assolutamente nulla in termini di performance.

Il comando dim è incredibilmente potente, ma nasconde una trappola molto

insidiosa. Quando scegli un nome per la tua variabile (un alias), devi assolutamente

evitare di usare esattamente o di iniziare il nome della tua variabile con:

- parole Chiave di Batari Basic: rem, if, then, goto, end, ecc.

- nomi di Registri Hardware: COLUBK, player0x, REFP0, NUSIZ0, AUDV0, ecc.

- variabili Speciali: score, pfscorecolor, missile0height, ecc.

Se nel codice useremo un alias sconosciuto o non corretto (ad esempio: hero_xx),

verrà segnalato con un errore del tipo:

primo_gioco.bas.asm (1818): error: Unknown Mnemonic 'sta hero_xx '.

Attenzione! Queste regole si applicano anche alle label. Mai usare un nome per la

label uguale ad una parola chiave del linguaggio o che iniza con essa!

Da questo punto in avanti, useremo sempre dim per le nostre variabili. È una delle

pratiche più importanti per scrivere codice pulito e facile da modificare in futuro.

Diremo addio al “labirinto delle variabili a-z” e daremo ai nostri dati dei nomi che

abbiano un senso. Scegli sempre nomi unici e descrittivi per le tue variabili,

preferibilmente usando il minuscolo e il trattino basso “_” per separare le parole.

Pagina 62 di 236

8.2 – Oggetti Grafici Semplici: Palla e Missili
Finora abbiamo lavorato principalmente con gli sprite (player0, player1) e lo sfondo (playfield).

Ma l’Atari 2600 ha altri tre assi nella manica: la Palla (ball) e i due Missili (missile0, missile1).

Sono oggetti grafici semplici, ma incredibilmente versatili, usati in innumerevoli classici da

Pong a Combat.

Non puoi definirne la forma con dati binari come fai per gli sprite, ma puoi controllarne

posizione, dimensione e colore.

Colore Condiviso: Questi oggetti, per come è stato progettato l’hardware dell’Atari 2600,

“prendono in prestito” il colore da altri elementi:

 La ball ha sempre lo stesso colore del Playfield (COLUPF).

 missile0 ha sempre lo stesso colore di player0 (COLUP0).

 missile1 ha sempre lo stesso colore di player1 (COLUP1).

Controllo Dimensioni: La loro altezza e larghezza sono controllate da registri speciali.

Altezza: ballheight, missile0height, missile1height (valori da 1 a 8 pixel).

Larghezza: Controllata da bit specifici nei registri CTRLPF (per la ball) e NUSIZ0/NUSIZ1 (per

i missili). Le larghezze possibili sono 1, 2, 4 o 8 pixel.

Screenshot di Combat: i missili (al centro dello schermo) hanno lo stesso colore dei player

8.3 – La Palla Rimbalzante
Mettiamo subito in pratica queste conoscenze. Creeremo un programma che fa rimbalzare una

palla all’interno dello schermo. Questo è il cuore di giochi come Pong o Breakout. Vogliamo:

 Creare una palla visibile e di dimensioni adeguate (4x4 pixel).

 Darle una velocità iniziale.

 Invertire la sua velocità quando tocca i bordi dello schermo.

Pagina 63 di 236

 rem La Palla Rimbalzante

 set romsize 2k

 dim ball_x = a

 dim ball_y = b

 dim vel_x = c

 dim vel_y = d

 rem --- Inizializzazione ---

 ball_x = 80 ; Posizione iniziale

 ball_y = 50

 vel_x = 1 ; Velocità iniziale

 vel_y = 1

main_loop

 rem --- Aggiorna Posizione ---

 ball_x = ball_x + vel_x

 ball_y = ball_y + vel_y

 rem --- Logica di Rimbalzo sui Bordi ---

 if ball_x < 10 || ball_x > 150 then vel_x = 0 - vel_x ; inverte velocità x

 if ball_y < 10 || ball_y > 85 then vel_y = 0 - vel_y ; inverte velocità y

 rem --- Disegno ---

 ballx = ball_x ; Assegna la posizione X calcolata al registro hardware

 bally = ball_y ; Assegna la posizione Y calcolata al registro hardware

 ballheight = 4 ; Altezza di 4 pixel

 CTRLPF = 32 ; Larghezza di 4 pixel (vedi Appendice B)

 COLUBK = $08 ; Sfondo grigio

 COLUPF = $1E ; Il colore della palla sarà giallo

 drawscreen

 goto main_loop

Premi F5. Vedrai una palla quadrata verde rimbalzare all’infinito sullo schermo. Hai appena

creato il tuo primo motore fisico! Per una guida completa su tutti i valori possibili per i registri

CTRLPF e NUSIZx, consulta l’Appendice B.

8.4 – La Magia dei Missili Orizzontali
Finora abbiamo pensato ai missili come proiettili verticali. Ma come si creano oggetti orizzontali

come la spada di un cavaliere in Adventure o i laser in Berzerk? La risposta è un altro geniale

trucco del TIA.

Per creare un missile orizzontale, devi:

- Impostare la sua altezza (missile0height) a un valore molto piccolo (di solito 0). Questo

lo trasforma in una linea sottile.

- Usare il registro NUSIZ0 per dargli una larghezza (fino a 8 pixel).

La Genialità Nata dalla Necessità

Affermare che il Television Interface Adapter (TIA) è “geniale” non è

un’esagerazione, ma il riconoscimento di una delle più incredibili opere di

ingegneria minimalista nella storia dei videogiochi. Per capire l’Atari 2600,

dobbiamo tornare al 1977. L’obiettivo non era creare la console più potente

possibile, ma quella più economica possibile. Ogni componente, ogni transistor,

ogni singolo centesimo risparmiato sul costo di produzione era fondamentale per

rendere la console accessibile alle famiglie. Questa filosofia di design, guidata dal

leggendario ingegnere Jay Miner, portò alla creazione di un hardware estremamente

limitato, ma incredibilmente flessibile.

Pagina 64 di 236

Nata per Pong, Preparata per l’Impossibile

Inizialmente, l’hardware dell’Atari 2600 fu concepito per giochi molto semplici,

come Pong o Combat. Il TIA era stato progettato per muovere pochi oggetti (due

“racchette”, due “proiettili”, una “palla”) su uno sfondo quasi inesistente. Non

esisteva un “framebuffer”, ovvero una memoria video dove disegnare un’immagine

completa. Tutto doveva essere generato in tempo reale, riga per riga, in sincrono con

il pennello elettronico del televisore (“Racing the Beam”). Sembrava una condanna

a giochi eternamente semplici. E invece, accadde l’incredibile. I programmatori,

inizialmente gli stessi ingegneri di Atari e poi quelli delle prime software house

come Activision, iniziarono a “interrogare” l’hardware. Scoprirono che, cambiando i

registri del TIA nel mezzo del disegno di un singolo frame, potevano convincere il

TIA a fare cose per cui non era mai stato progettato. Volevano più di due oggetti per

riga? Cambiavano la posizione orizzontale di uno sprite “al volo” dopo che era già

stato disegnato, per farlo riapparire in un altro punto della stessa riga, creando

l’illusione di più oggetti (una tecnica usata per gli alieni di Space Invaders).

Volevano sfondi complessi e colorati? Cambiavano i registri del colore del playfield

a ogni nuova scanline per creare cieli sfumati, orizzonti e terreni. Volevano oggetti

complessi e non solo proiettili verticali? Hanno trasformato un missile in una sottile

linea orizzontale e gli hanno dato una larghezza variabile, creando spade, laser e

barriere. La “magia” dell’Atari 2600 non risiede tanto nella potenza del suo

hardware, quanto nella sua vulnerabilità al controllo del software. Il TIA non era un

processore grafico rigido; era un set di strumenti grezzi che un programmatore abile

poteva “suonare” come uno strumento musicale, inventando nuove melodie

(tecniche) ad ogni frame. Ogni gioco innovativo, da Pitfall! a River Raid, era una

testimonianza non di ciò che l’hardware poteva fare, ma di ciò che l’ingegno di un

programmatore poteva costringerlo a fare. È questa la vera eredità dell’Atari 2600:

la dimostrazione che i limiti, quando affrontati con creatività, non sono muri, ma

trampolini di lancio per l’inventiva!

8.5 – La Spada dell’Eroe
Mettiamo in pratica la creazione di un oggetto orizzontale. In questo esempio, il nostro eroe (un

semplice quadrato) potrà brandire una “spada” premendo il pulsante di fuoco. Questo codice

infatti crea una “spada” orizzontale di 8 pixel che appare quando si preme il pulsante di fuoco.

 rem La Spada dell'Eroe

 set romsize 2k

 dim hero_x = a

 dim hero_y = b

 rem --- Inizializzazione ---

 hero_x = 80

 hero_y = 50

 player0:

 %11100111

 %01100110

 %01100110

 %00111100

 %11111111

 %00011000

 %00011000

end

main_loop

 rem --- Logica di Movimento ---

Pagina 65 di 236

 if joy0left then hero_x = hero_x - 1

 if joy0right then hero_x = hero_x + 1

 if joy0up then hero_y = hero_y - 1

 if joy0down then hero_y = hero_y + 1

 rem --- Logica della Spada ---

 ; se giocatore preme fuoco:

 ; Allinea la spada verticalmente al centro dell'eroe

 ; Posiziona la spada a destra dell'eroe

 ; Altezza minima, la trasforma in una linea

 ; Larghezza di 8 pixel (M=3, P=0 - vedi Appendice B)

 if joy0fire then missile0y = hero_y - 5: missile0x = hero_x + 8 : missile0height = 0 : NUSIZ0 =

 $30

 ; se giocatore non preme fuoco:

 ; Nascondi la spada fuori dallo schermo

 if !joy0fire then missile0y = 200

 rem --- Disegno ---

 player0x = hero_x

 player0y = hero_y

 COLUP0 = $1E ; Colore dell'eroe e della spada (giallo)

 COLUBK = $04 ; Sfondo grigio

 drawscreen

 goto main_loop

Premi F5. Muovi il tuo quadrato sullo schermo. Ora, tenendo premuta la barra spaziatrice, vedrai

apparire una linea gialla orizzontale accanto a esso. Hai creato la tua prima spada!

Combinando missileXheight e NUSIZx, puoi creare proiettili e oggetti di forme diverse,

superando di gran lunga l’idea di un semplice “missile”. Hai appena sbloccato un altro potente

strumento del tuo arsenale di ingegnere Atari.

Hai appena imparato a controllare la posizione di player0, missile0 e ball. Potresti

pensare che per allinearli perfettamente basti assegnare loro le stesse coordinate. Ad

esempio:

player0x = 50 : player0y = 50

missile0x = 50 : missile0y = 50

ballx = 50 : bally = 50

Se provi questo codice, noterai qualcosa di molto strano: orizzontalmente (x) gli

oggetti saranno allineati, ma verticalmente (y) appariranno tutti a diverse altezze!

Benvenuto in una delle peculiarità più complesse dell’Atari 2600!

L’Asse X (Orizzontale): Semplice e Prevedibile

Fortunatamente, sull’asse X non ci sono sorprese. La coordinata x si riferisce

sempre al pixel più a sinistra di ogni oggetto. Impostare lo stesso valore di x per

player0, missile0 e ball li allineerà perfettamente sul loro bordo sinistro.

L’Asse Y (Verticale): Il Dominio del Kernel

Qui le cose si complicano. Il problema è che l’origine verticale (il “punto zero”) non

è la stessa per ogni tipo di oggetto. Questa differenza non è causata dall’hardware

(il TIA), ma dal kernel di Batari Basic. Per ottimizzare il disegno dello schermo, il

kernel introduce dei piccoli slittamenti (offset) verticali diversi per ogni classe di

oggetto.

Pagina 66 di 236

Non esiste una formula magica unica (y_missile = y_player + N) che funzioni in

ogni situazione per allineare gli oggetti. L’offset esatto può variare leggermente a

seconda delle opzioni del kernel che usi, dell’altezza dello sprite e di altri fattori di

ottimizzazione. L’unico modo affidabile per allineare perfettamente gli oggetti

sull’asse Y è sperimentare e trovare l’offset giusto per il tuo gioco. Inizia con lo

stesso valore di y e poi aggiusta finché il risultato non ti soddisfa (ovvero gli oggetti

appaiono dove desideri).

Cos’è il Kernel di Batari Basic?

Batari Basic è un “traduttore” (compilatore) che trasforma il nostro codice in

linguaggio macchina per l’Atari 2600, il vero linguaggio che la CPU 6507 è in grado

di eseguire. Ma non è tutto. Quando compili il tuo gioco, Batari Basic fa qualcosa di

molto intelligente: inietta nel tuo file di gioco una porzione di codice pre-scritto,

estremamente ottimizzato, chiamato Kernel. Pensa al Kernel come al motore grafico

e sonoro del tuo gioco. È una complessa routine che si occupa dei compiti più

difficili e ripetitivi. Il suo lavoro principale è uno dei più ardui della

programmazione Atari: disegnare lo schermo (drawscreen).

Cosa Fa Esattamente il Kernel Standard?

Quando nel nostro main_loop chiamiamo drawscreen, in realtà stiamo dicendo al

Kernel: “Prendi il comando!”. A quel punto, il Kernel si assume la responsabilità di:

1. Sincronizzarsi con il Televisore: Gestisce il “Racing the Beam”, assicurandosi che

ogni riga venga disegnata al momento giusto.

2. Disegnare tutti gli Oggetti: Legge le posizioni e i dati grafici di player0, player1,

missile0, missile1, ball e playfield e li disegna sullo schermo, riga per riga.

3. Creare le Basi per il Suono e l’Input: Si assicura che il TIA e il RIOT siano pronti

a ricevere i nostri comandi.

In pratica, il Kernel è il nostro assistente instancabile che si occupa di tutta la “bassa

manovalanza” hardware, permettendoci di concentrarci sulla logica del gioco

usando comandi semplici. Senza il Kernel, dovremmo gestire manualmente ogni

singola scanline del televisore, un compito incredibilmente complesso.

Questo incredibile aiuto, però, ha un costo: lo spazio. Il codice del Kernel Standard

occupa una porzione significativa della nostra preziosa memoria ROM.

Esistono anche altri Kernel specializzati (come il DPC+ o i Multisprite Kernel),

ognuno con i propri compromessi tra funzionalità e spazio occupato. Per questo

manuale, ci concentreremo sul Kernel Standard, il perfetto punto di partenza per

ogni esploratore dell’Atari 2600.

Mai dimenticarsi dei Registri Volatili!

Per come funziona il kernel, alcuni registri sono volatili ovvero devi ricordarti di

reimpostarli ad ogni frame nel main loop perchè la drawscreen li azzererà. Ecco

la lista dei registri grafici volatili più comuni che devono essere sempre reimpostati

all’interno del main loop, prima di ogni drawscreen:

REFP0, REFP1 (Riflessione degli Sprite): Specchiano orizzontalmente player0 e

player1.

Pagina 67 di 236

NUSIZ0, NUSIZ1 (Dimensione e Copie degli Sprite/Missili): Controllano la

larghezza dei missili e il numero di copie o la larghezza (doppia, quadrupla) dei

player.

COLUP0, COLUP1, COLUPF (Colori dei Player, Missili, Palla e Playfield):

Definiscono il colore degli oggetti mobili e dello sfondo.

PF0, PF1, PF2 (Dati del Playfield - per colonne fisse): Usati per disegnare colonne

verticali fisse (utili per mascherare artefatti o creare barre laterali).

Troverai molte altre informazioni sui registri nell’appendice B!

8.6 – Progetto Guidato: Tiro al Bersaglio
È il momento di mettere insieme tutto quello che abbiamo imparato in questo capitolo per creare

un nuovo mini-gioco completo.

Il giocatore (player0) si muove solo orizzontalmente in basso. Premendo fuoco, spara un

proiettile (missile0) verso l’alto. Un bersaglio (ball) cade dall’alto in posizioni casuali. Se il

proiettile colpisce il bersaglio, il punteggio aumenta. Se il bersaglio raggiunge il fondo, il gioco

finisce.

La Variabile score

Batari Basic ci offre una variabile speciale chiamata score. È un contatore a 6 cifre

visualizzato permanentemente in fondo allo schermo. A differenza delle normali

variabili (0-255), può gestire numeri fino a 999.999. Per aggiungere punti si usa

l’aritmetica standard, come score = score + 1. Approfondiremo il suo

funzionamento e le opzioni di personalizzazione nel Capitolo 15.

La Casualità con rand

Il comando rand genera un numero casuale da 0 a 255. È lo strumento perfetto per

aggiungere imprevedibilità ai nostri giochi, come far apparire i nemici in posizioni

diverse. Per ottenere una vera casualità tra una partita e l’altra, è necessario però

inizializzare il generatore di numeri casuali, una tecnica che esploreremo

nell’Appendice C.

Ecco il codice completo per il nostro tiro al bersaglio.

 rem Progetto: Tiro al Bersaglio

 set romsize 2k

 rem --- Alias delle Variabili ---

 dim player_x = a

 dim missile_y = b

 dim target_x = c

 dim target_y = d

 dim game_over = e

 dim timer_caduta = f

 rem --- Inizializzazione del Gioco ---

 gosub reset_game

main_loop

 rem se il gioco non è finito, continua con la logica di gioco

 if game_over = 0 then goto main_loop2

 rem Se il gioco è finito, attendi l'input per riavviare

 if joy0fire then gosub reset_game

 goto draw_frame ; Salta la logica di gioco

Pagina 68 di 236

main_loop2

 rem --- Logica di Gioco ---

 rem 1. Movimento del Giocatore

 if joy0left && player_x > 10 then player_x = player_x - 1

 if joy0right && player_x < 150 then player_x = player_x + 1

 rem 2. Logica dello Sparo

 rem Se il pulsante è premuto E non c'è già un missile attivo (missile_y > 0)

 if joy0fire && missile_y = 0 then missile_y = 85 : missile0x = player_x + 4

 ; Posizione di partenza del missile

 ; Allinea il missile al centro del giocatore

 rem 3. Movimento del Missile

 if missile_y > 0 then missile_y = missile_y - 3 : if missile_y < 10 then missile_y = 0

 ; Muovi il missile verso l'alto

 ; Se raggiunge la cima, disattivalo

 rem 4. Movimento del Bersaglio

 timer_caduta = timer_caduta + 1 ; ogni frame incrementa il timer di caduta

 if timer_caduta = 3 then timer_caduta = 0 : target_y = target_y + 1

 ; Fai cadere il bersaglio solo quando timer_caduta è uguale a 3

 ; questo rallenta la caduta

 if target_y > 90 then game_over = 1 ; Se il bersaglio tocca il fondo il gioco finisce.

 rem 5. Controllo Collisioni

 rem La funzione collision() controlla se missile0 e ball si toccano

 if collision(missile0, ball) then score = score + 1 : gosub reset_target : missile_y = 0

 ; Aumenta il punteggio

 ; Fai riapparire il bersaglio in un nuovo punto

 ; Disattiva il missile per poter sparare di nuovo

draw_frame

 rem --- Sezione di Disegno ---

 rem Disegna il giocatore

 player0x = player_x

 player0y = 88

 player0: ; Una semplice forma a "torretta"

 %11111111

 %01111110

 %00111100

end

 rem Posiziona il missile (se attivo) oppure nascondilo

 if missile_y > 0 then missile0y = missile_y

 if missile_y = 0 then missile0y = 200

 missile0height = 8 ; Un missile alto e sottile

 rem Disegna il bersaglio (la ball)

 ballx = target_x

 bally = target_y

 ballheight = 4

 CTRLPF = 32 ; Rende la palla larga 4 pixel, per farla quadrata

 rem Imposta i colori

 if game_over = 1 then COLUBK = $44 ; Sfondo rosso in game over

 if game_over = 0 then COLUBK = $08 ; Sfondo grigio durante il gioco

 COLUP0 = $9E ; azzurro per giocatore e missile

 COLUPF = $1E ; Giallo per il bersaglio (la ball condivide il colore del playfield)

 scorecolor = $1E ; Colore giallo per il testo dello score

 drawscreen

 goto main_loop

 rem ========= SUBROUTINES =========

reset_game

Pagina 69 di 236

 rem Questa subroutine inizializza o ripristina lo stato del gioco

 player_x = 80

 missile_y = 0

 game_over = 0

 score = 0

 gosub reset_target

 return

reset_target

 rem Riposiziona il bersaglio in un nuovo punto casuale in alto

 target_x = rand/2 + 20 ; Usa rand per la posizione X, con un offset

 target_y = 1

 timer_caduta = 0

 return

Analizziamo per bene il codice.

• set romsize 2k: Come sempre, diciamo al compilatore di preparare una cartuccia da 2

kilobyte.

• dim ...: Usiamo dim per dare nomi significativi alle nostre variabili. Questo rende il

codice molto più facile da leggere. player_x controllerà la posizione orizzontale del

giocatore, missile_y quella del proiettile, e così via. game_over sarà il nostro flag di stato

principale, e timer_caduta ci servirà per rallentare il bersaglio.

• gosub reset_game: All’avvio del programma, chiamiamo subito la subroutine

reset_game. Questa routine, che vedremo più avanti, si occupa di impostare tutti i valori

iniziali (posizione del giocatore, punteggio a zero, ecc.), preparando il campo di gioco per

la prima partita.

• Il main_loop è molto semplice e funge da “smistatore”. Controlla la variabile game_over.

Se è 0, significa che stiamo giocando, quindi salta (goto) al ciclo di gioco vero e proprio,

etichettato main_loop2.

Se game_over è 1, significa che la partita è finita. Il programma rimane in attesa. Se il

giocatore preme il pulsante di fuoco (joy0fire), chiama di nuovo reset_game per riavviare

la partita. In questo stato, salta direttamente alla sezione di disegno (goto draw_frame)

per mantenere lo schermo attivo ma “congelare” il gioco.

• Movimento del Giocatore: Il codice legge il joystick. Se viene premuto sinistra o destra,

e il giocatore non ha raggiunto i bordi dello schermo (delimitati da 10 e 150), la sua

posizione player_x viene aggiornata.

• Logica dello Sparo: Questa è una riga molto densa. Controlla due condizioni

contemporaneamente (&&):

- Il giocatore sta premendo il pulsante di fuoco (joy0fire)?

- Non c’è già un missile attivo sullo schermo (missile_y = 0)? Se entrambe le

condizioni sono vere, “attiva” un nuovo missile impostando missile_y a 85 (la sua

posizione di partenza verticale) e allinea la sua posizione orizzontale (missile0x)

al centro del giocatore. Il fatto di controllare missile_y = 0 ci impedisce di sparare

raffiche infinite di missili.

• Movimento del Missile: Se un missile è attivo (missile_y > 0), la sua posizione verticale

viene decrementata di 3 ad ogni frame, facendolo muovere verso l’alto. Se il missile

raggiunge la cima dello schermo (missile_y < 10), la sua variabile missile_y viene

resettata a 0, “disattivandolo” e permettendo al giocatore di sparare di nuovo.

• Movimento del Bersaglio: Qui usiamo un timer per rallentare la caduta. timer_caduta

viene incrementato a ogni frame. Solo quando raggiunge il valore 3, il bersaglio scende di

un pixel (target_y = target_y + 1) e il timer viene azzerato. In pratica, il bersaglio si

Pagina 70 di 236

muove solo un frame ogni tre, apparendo più lento. Se il bersaglio raggiunge il fondo

(target_y > 90), la variabile game_over viene impostata a 1, terminando la partita.

Controllo Collisioni: La funzione collision() controlla se il missile0 e la ball (il nostro

bersaglio) si stanno toccando. Se sì, esegue tre azioni in sequenza:

1. score = score + 1 : Aumenta il punteggio.

2. gosub reset_target: Chiama la subroutine che riposiziona il bersaglio in un nuovo

punto casuale.

3. missile_y = 0: Disattiva il missile, permettendo al giocatore di sparare di nuovo.

• Il codice posiziona ogni oggetto (player0x, missile0y, ballx, ecc.) usando i valori delle

variabili calcolate nella sezione logica.

• Imposta i colori in base allo stato del gioco: lo sfondo COLUBK diventa rosso quando

game_over è 1.

• Infine, drawscreen disegna tutto e goto main_loop fa ripartire il ciclo.

• reset_game: Questa routine viene chiamata all’inizio e al riavvio. Imposta tutte le

variabili ai loro valori di partenza (punteggio a zero, giocatore al centro, ecc.) e poi

chiama reset_target per posizionare il primo bersaglio.

• reset_target: Questa è la routine che rende il gioco imprevedibile. Usa il comando rand

per generare un numero casuale, che viene usato per calcolare una nuova posizione

target_x per il bersaglio. Reimposta anche la posizione target_y in cima allo schermo e

azzera il timer di caduta.

8.7 – Usare i bit-flag
Finora, per memorizzare uno stato semplice come “il giocatore ha la chiave?” abbiamo usato

un’intera variabile (un byte completo, che può contenere 256 valori diversi, da 0 a 255) per

rispondere a una domanda che ha solo due risposte: sì o no. È come usare un intero foglio di

carta per scrivere una singola spunta. Nella programmazione Atari, dove ogni byte è un tesoro,

questo è un lusso che non sempre possiamo permetterci.

Esiste una tecnica da programmatori esperti per ottimizzare la memoria: i bit-flag.

Una singola variabile (un byte) è composta da 8 bit. Ogni bit può essere visto come un piccolo

interruttore indipendente, che può essere “acceso” (valore 1) o “spento” (valore 0). Invece di

usare una variabile per un solo stato, possiamo usarne una per memorizzarne fino a 8!

Nell’immagine sopra, vediamo il byte composto dai suoi 8 bit. Il bit “0” è quello più a destra e

nell’esempio è accesso e quindi è 1. Il bit “6” è il penultimo a sinistra ed è spento, cioè 0.

In Batari Basic per leggere o scrivere un singolo bit di una variabile, si usa questa sintassi:

variabile{numero_bit}

Pagina 71 di 236

Immaginiamo di voler tenere traccia di più stati per il nostro eroe: il possesso della spada e il

possesso dello scudo. Senza i bit-flag, avremmo bisogno di due variabili separate (un grande

spreco!):

 dim has_sword = a

 dim has_shield = b

Con i bit-flag, possiamo usare una sola variabile, che chiameremo hero_flags:

 dim hero_flags = a

 rem Inizializzazione: l'eroe non ha nulla

 hero_flags = 0

main_loop

 rem ... logica di gioco ...

 rem L'eroe ha trovato la spada!

 hero_flags{0} = 1 ; Accendi il bit 0 per indicare che ha la spada

 rem ... logica di gioco ...

 rem L'eroe ha trovato lo scudo!

 hero_flags{1} = 1 ; Accendi il bit 1 per indicare che ha lo scudo

 rem ... logica di gioco ...

 rem Possiamo attaccare solo se abbiamo la spada

 if joy0fire && hero_flags{0} then gosub attack_routine

In questo esempio, abbiamo usato una singola variabile (a) per gestire due stati completamente

diversi, semplicemente usando separatamente i suoi bit 0 e 1.

Il Test con if

Quando controlli un bit-flag in una condizione if, ricorda la regola che abbiamo

visto per il joystick: non usare il segno di uguale!

Il test if variabile{bit} è già di per sé una domanda “questo bit è uguale a 1?”.

if hero_flags{0} then ... ← Corretto! (Significa “SE il bit 0 è 1…”)

if hero_flags{0} = 1 then ... ← Errato!

Per controllare se un bit è 0, usa l’operatore di negazione !:

if !hero_flags{0} then ... (Significa “SE il bit 0 NON è 1 (cioè è 0)…”)

Perché un Byte va da 0 a 255?

Hai notato che tutte le variabili (a...z) e i registri del TIA possono contenere solo

numeri da 0 a 255?

La quantità fondamentale di informazione che il tuo Atari 2600 (e qualsiasi

computer) elabora è il Byte. Un byte è un gruppo di 8 Bit.

Cos'è un Bit? Un Bit (Binary Digit) è un singolo interruttore elettronico che può

essere solo su due stati: Acceso (1) o Spento (0).

Ogni bit all'interno del byte ha un valore fisso, che è una potenza del 2, proprio

come le cifre nelle nostre normali decine e centinaia.

Pagina 72 di 236

Quando un bit è Acceso (1), il suo valore viene contato. Quando è Spento (0), il suo

valore viene ignorato.

Quindi, guardando all’esempio qui sopra, se un registro o una variabile ha il valore

179, significa che i suoi bit 7,5,4,1 e 0 sono “accesi”.

Padroneggiare i bit-flag è una delle abilità chiave per “spremere ogni byte” e creare giochi

complessi con risorse minime. Molti dei giochi classici e degli esempi nella libreria finale di

questo manuale ne fanno un uso intensivo.

Pagina 73 di 236

Capitolo 9 – Padroneggiare il Playfield

Finora abbiamo trattato il Playfield come una struttura statica, un bassorilievo digitale definito

una volta per tutte all’inizio del gioco. Ma i mondi più interessanti sono quelli che cambiano, che

reagiscono alle azioni del giocatore, che si muovono. In questo capitolo, sbloccheremo il vero

potenziale del Playfield.

9.1 – Leggere il Mondo: Il Comando pfread
Come fa il nostro programma a sapere se un punto specifico del Playfield è un “mattone” (X) o

uno spazio vuoto (.)? Possiamo interrogare la memoria della console usando il comando pfread.

pfread(x, y) è una domanda che restituisce “vero” se il blocco del Playfield alla coordinata (x, y)

è acceso, e “falso” se è spento. La coordinata x va da 0 a 31 (da sinistra a destra). La coordinata

y va da 0 a 10 (dall’alto in basso).

Questo comando è fondamentale per creare una logica di collisione con i muri veramente solida,

come abbiamo anticipato con la tecnica “Salva e Ripristina”. Invece di far “rimbalzare” il

giocatore, possiamo impedirgli del tutto di entrare in un muro.

pfread può essere utilizzato solo all’interno di espressioni if come valore vero o

falso, similmente a collision o joy0fire. Inoltre per le coordinate tra parentesi vanno

utilizzate solo variabili “da sole” oppure numeri interi. La stessa regola si applica a

pfpixel che vedremo tra poco.

Convertire Coordinate Sprite in Coordinate Playfield

Per usare pfread() con il tuo player, devi “tradurre” le coordinate dello sprite in

coordinate del Playfield. La formula base per trovare il blocco (pf_x, pf_y) su cui si

trova l’angolo in alto a sinistra di player0(o player1) è:

 pf_x = (player0x - 16) / 4

 pf_y = player0y / 8

Tuttavia è come sempre necessario poi lavorare su eventuali offset dipendenti dalle

caratteristiche dello sprite. Padroneggiare questa conversione è il segreto per creare

interazioni precise con lo scenario.

9.2 – Missione: Costruire e Distruggere con pfpixel
Il comando pfread ci permette di leggere, ma pfpixel ci permette di scrivere. Con questo

comando, possiamo accendere (on) o spegnere (off) o invertire (flip) un singolo “mattone” del

Playfield durante il gioco:

 pfpixel x y on

 pfpixel x y off

 pfpixel x y flip

Questo apre le porte a un’infinità di meccaniche di gioco dinamiche: muri che possono essere

distrutti, ponti che possono essere costruiti, porte che si aprono.

Creiamo un gioco in cui il giocatore deve far comparire un ponte (premendo fuoco) per

attraversare un baratro. Ogni volta che si preme fuoco, compare un nuovo “blocco” su cui si può

procedere.

Pagina 74 di 236

 Rem Il Ponte Magico

 set romsize 2k

 dim player_x = a

 dim player_y = b

 dim bricks = c

 dim floor = d

 dim retain = e

 rem --- Inizializzazione ---

 player_x = 20

 player_y = 64

 bricks = 5 ; Il giocatore ha 5 mattoni

 player0:

 %0010100

 %0010100

 %0010100

 %1001001

 %0111110

 %0001000

 %0011100

 %0011100

end

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X........................X

 X........................X

 X....XX.....................X..X

 X...........................X..X

 X........................XXXX..X

 X...............................

 X...............................

 XXXXXXXXXXXX.....XXXXXXXXXXXXXXX

 X..............................X

 X..............................X

end

main_loop

 if joy0left && player_x > 20 then player_x = player_x - 1

 rem determina se il giocatore è sul ponte

 t = (player_x + 5 - 16) / 4 ; +5 perchè il piede destro finisce al pixel 5

 if joy0right && player_x < 130 && pfread(t,8) then player_x = player_x + 1

 rem Resetta il flag di ritenzione del fire

 if !joy0fire then retain = 0

 rem Se il giocatore preme fuoco

 if joy0fire && bricks > 0 && retain = 0 then goto build_bridge

 goto continue_game

build_bridge

 t = 17 - bricks

 pfpixel t 8 on ; ...costruisce un pezzo di ponte!

 bricks = bricks - 1

 retain = 1

continue_game

 player0x = player_x

 player0y = player_y

 COLUP0 = $1E ; Colore player0

 COLUBK = $04 ; Sfondo grigio

 COLUPF = $9E ; Colore playfield

 drawscreen

 goto main_loop

Pagina 75 di 236

Il Problema del “Fuoco a Ripetizione” e la Tecnica del “Retain”

Se avessimo usato solo if joy0fire && bricks>0 then …. senza && retain = 0

avresti visto comparire tutti e 5 i blocchi del ponte in un istante: la pressione del fire

viene infatti letta a ogni frame, 60 volte al secondo!

Come possiamo dire al programma di “eseguire l’azione una sola volta, anche se il

pulsante rimane premuto, e attendere che venga rilasciato e premuto di nuovo”? La

soluzione è proprio una tecnica classica chiamata “ritenzione dell’input” (o input

debouncing).

L’idea è semplice: usiamo una variabile retain (un “flag”) per ricordare se l’azione

legata al pulsante è già stata eseguita in seguito all’ultima pressione.

Nel main loop, controlliamo se il pulsante di fuoco non è premuto (if !joy0fire …) e

in tal caso azzeriamo la nostra variabile di ritenzione. Questo “resetta” la possibilità

di eseguire di nuovo l’azione.

Quando verifichiamo se il giocatore vuole sparare, aggiungiamo una condizione: la

nostra variabile di ritenzione deve essere a zero.

Infine, appena l’azione viene eseguita, impostiamo subito la variabile di ritenzione a

1. Questo “blocca” la possibilità di eseguire di nuovo l’azione nei frame successivi,

anche se il giocatore continua a tenere premuto il pulsante.

Disegno Veloce: pfhline e pfvline

Disegnare un labirinto complesso con pfpixel sarebbe lento e dispendioso. Per

questo esistono due comandi più potenti che disegnano intere linee di mattoni in un

colpo solo.

 pfhline x y l on ; disegna una linea orizzontale di l blocchi (off = cancella)

Pagina 76 di 236

 pfvline x y a on ; disegna una linea verticale di a blocchi (off = cancella)

Sono perfetti per generare labirinti o strutture complesse all'inizio di un livello,

risparmiando preziosa memoria ROM!

9.3 – Mondi in Movimento: Lo Scrolling con pfscroll
E se volessimo che fosse il mondo a muoversi, invece del giocatore? Il comando pfscroll ci

permette di far scorrere l’intero Playfield in una delle quattro direzioni:

 pfscroll up

 pfscroll down

 pfscroll left

 pfscroll right

Questa è la tecnica fondamentale per tutti i giochi a scorrimento, come gli sparatutto verticali o i

giochi di corse automobilistiche. Tuttavia richiede di riscrivere, dopo lo scroll, la zona del

playfield che è rimasta vuota.

Per creare ad esempio l’illusione di una strada che si muove verso il basso, potremmo scrivere

questo codice:

main

 ; ... logica di gioco ...

 rem Fa scorrere la strada

 pfscroll down

 drawscreen

 goto main

Lo Scrolling è Costoso!

Lo scorrimento orizzontale (pfscroll left/right) è una delle operazioni più “pesanti”

in Batari Basic e consuma moltissimi cicli CPU. Usalo con cautela e assicurati che

la logica del tuo main loop sia molto snella per evitare lo screen roll (ne parleremo

nel capitolo 13). Lo scorrimento verticale (pfscroll up/down) è molto più leggero.

9.4 – Movimento su Griglia per Labirinti Giocabili
Abbiamo imparato a disegnare labirinti, ma come ci si muove al loro interno senza “incastrarsi”

nei muri? I giochi classici come Pac-Man risolvono questo problema con una tecnica chiamata

Movimento su Griglia.

L’idea è che il giocatore può cambiare direzione solo in punti specifici (“incroci”) di una griglia

invisibile. Il programma “ricorda” la direzione desiderata dal giocatore, ma la applica solo

quando raggiunge un incrocio valido, ovvero delle coordinate ritenute valide per cambiare

direzione.

Questo codice permette di cambiare direzione orizzontale solo su certe righe, e verticale solo su

certe colonne.

 rem Movimento su Griglia

 set romsize 2k

 dim allow_h = a

 dim allow_v = b

 dim current_dir = c

 dim desired_dir = d

 player0x=77 : player0y=48 ; posizione iniziale

Pagina 77 di 236

 playfield:

 ..XXXXXXXXXXXXXXXXXXXXXXXXXXXX..

 ..X..........................X..

 ..XXXXXXXXXXXXX..XXXXXXXXXXXXX..

 ..X..........................X..

 ..XXXXXXXXXXXXXXXXXXXXXXXXXXXX..

end

 player0:

 %00111100

 %01111110

 %11111111

 %11100000

 %11111111

 %01011110

 %00111100

end

main_loop

 gosub check_grid_position

 gosub handle_grid_input

 gosub apply_grid_movement

 COLUP0 = $1E ; Giallo per il giocatore

 COLUPF = $9E ; Azzurro per lo sfondo

 drawscreen

 goto main_loop

check_grid_position

 allow_h = 0 : allow_v = 0

 rem Puoi cambiare direzione orizzontale solo sulle righe 48 o 64

 if player0y = 48 || player0y = 64 then allow_h = 1

 rem Puoi cambiare direzione verticale solo sulla colonna 77

 if player0x = 77 then allow_v = 1

 return

handle_grid_input

 if joy0up then desired_dir = 1

 if joy0down then desired_dir = 2

 if joy0left then desired_dir = 3

 if joy0right then desired_dir = 4

 return

apply_grid_movement

 rem Se sei su un incrocio orizzontale, puoi cambiare direzione orizzontale

 if allow_h && desired_dir = 3 then current_dir = desired_dir

 if allow_h && desired_dir = 4 then current_dir = desired_dir

 rem Se sei su un incrocio verticale, puoi cambiare direzione verticale

 if allow_v && desired_dir = 1 then current_dir = desired_dir

 if allow_v && desired_dir = 2 then current_dir = desired_dir

 rem Muovi sempre nella direzione corrente

 if current_dir = 1 then player0y = player0y - 1

 if current_dir = 2 then player0y = player0y + 1

 if current_dir = 3 then player0x = player0x - 1

 if current_dir = 4 then player0x = player0x + 1

 rem Limita i movimenti all'interno della griglia

 if player0y < 48 then player0y = 48

 if player0y > 64 then player0y = 64

 if player0x < 29 then player0x = 29

 if player0x > 125 then player0x = 125

 return

Pagina 78 di 236

Questa tecnica, combinata con pfpixel e pfread, ti permette di creare labirinti complessi e

perfettamente giocabili, dando al giocatore la sensazione di un movimento fluido e controllato

all’interno di passaggi stretti.

Il Ciclo for...next – Potente ma Pericoloso

Batari Basic offre il classico ciclo for...next per eseguire un blocco di codice un

numero specifico di volte. La sua sintassi è familiare a chiunque abbia mai usato un

linguaggio BASIC.

 for variabile = valore1 to valore2 step valore3

 rem ... blocco di codice da ripetere ...

 next

- variabile è una qualsiasi variabile (a...z).

- valore1, valore2, valore3 possono essere numeri o altre variabili.

- step è opzionale; se omesso, il passo è +1. Puoi usare uno step negativo per contare

all'indietro.

 rem Conta da 1 a 10

 for x = 1 to 10

 rem ... fai qualcosa ...

 next

 rem Conta all'indietro da 50 a 0

 for y = 50 to 0 step -1

 rem ... fai qualcosa ...

 next

Sebbene sembri comodo, l'uso di for...next in Batari Basic è generalmente

sconsigliato per la logica di gioco principale, a causa di due comportamenti molto

particolari e potenzialmente pericolosi.

In Batari Basic, il comando next non si preoccupa di a quale for appartiene.

Quando incontra next, il compilatore semplicemente cerca all'indietro il primo

comando for che trova nel codice e salta lì, indipendentemente dal flusso del

programma. Questo può portare a risultati disastrosi.

Un ciclo for...next monopolizza la CPU finché non è completato. Se inserisci un

for...next lungo nel tuo main_loop, l'intero gioco si "congelerà". Non potrai leggere

l'input, muovere altri oggetti o riprodurre suoni fino alla fine del ciclo.

Usa i cicli for...next con molta cautela, principalmente per compiti di

inizializzazione che avvengono una sola volta (come disegnare un labirinto all'inizio

di un livello). Evitali quasi sempre all'interno del tuo main_loop.

Pagina 79 di 236

Capitolo 10 – Mondi a Schermate Multiple e Kernel Potenziati

Finora le nostre avventure si sono svolte in un’unica stanza. Il nostro eroe è nato, si è mosso e ha

interagito all’interno dei confini di un singolo schermo. Ma le grandi avventure richiedono

grandi mondi da esplorare: castelli con decine di stanze, giungle intricate, labirinti sotterranei.

In questo capitolo, impareremo due dei trucchi più affascinanti della programmazione Atari:

come creare l’illusione di un mondo vasto e interconnesso.

10.1 – Creare Mondi a Schermate Multiple
Come abbiamo visto, l’Atari 2600 fatica persino a disegnare un singolo schermo. Come poteva

allora un gioco come Adventure o Pitfall! avere centinaia di stanze diverse?

La risposta è semplice e geniale: non le mostrava tutte insieme. La console teneva in memoria

solo la stanza in cui si trovava il giocatore. Quando l’eroe usciva da un lato dello schermo, il

programma cancellava tutto, caricava la grafica della stanza successiva e riposizionava l’eroe sul

lato opposto. Per il giocatore, l’effetto era quello di un passaggio fluido da un’area all’altra di un

mondo enorme.

Per tenere traccia di dove si trova il giocatore, usiamo una singola variabile, il nostro “GPS”

interno, che chiameremo room. Ogni valore di room corrisponderà a una stanza diversa sulla

nostra mappa immaginaria.

La logica di gioco cambierà radicalmente. Invece di disegnare sempre lo stesso playfield,

useremo una struttura a “centralino” per decidere quale stanza disegnare, basandoci sul valore di

room.

10.2 – Le Due Stanze
Vediamo come funziona la transizione in un piccolo mondo a due stanze. Il nostro obiettivo è

creare un passaggio segreto: quando il giocatore supera un certo limite a destra, il valore di room

cambia e il giocatore viene riposizionato sul lato opposto del nuovo schermo.

 rem Le Due Stanze

 set romsize 2k

 dim player_x = a

 dim player_y = b

 dim room = c

 room = 1 ; si parte dalla stanza 1

 player_x = 50

 player0:

 %0010100

 %0010100

 %0010100

 %1001001

 %0111110

 %0001000

 %0011100

 %0011100

end

main_loop

 gosub handle_movement

 gosub handle_room_transition

 gosub draw_current_room

 goto main_loop

 rem ========= SUBROUTINES =========

Pagina 80 di 236

handle_movement

 if joy0left then player_x = player_x - 1

 if joy0right then player_x = player_x + 1

 if player_x > 136 then player_x = 136

 if player_x < 16 then player_x = 16

 return

handle_room_transition

 rem Se esci a destra dalla stanza 1, vai alla stanza 2

 if room = 1 && player_x > 134 then room = 2 : player_x = 18

 rem Se esci a sinistra dalla stanza 2, torna alla stanza 1

 if room = 2 && player_x < 18 then room = 1 : player_x = 134

 return

draw_current_room

 player0x = player_x

 player0y = 64

 COLUP0 = $08

 rem Centralino grafico

 if room = 1 then gosub draw_room1

 if room = 2 then gosub draw_room2

 drawscreen

 return

draw_room1

 COLUBK = $86 ; Sfondo blu

 COLUPF = $1E

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X.....X........................X

 X.....X........................X

 X.....X.....................X..X

 X...........................X..X

 X........................XXXX..X

 X...............................

 X...............................

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 return

draw_room2

 COLUBK = $36 ; Sfondo rosso

 COLUPF = $1E

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X.....X........................X

 X.....X........................X

 X...XXX........................X

 X......................X.......X

 X......................XXXX....X

 X

 X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 return

Premi F5. Ti troverai in una stanza blu con un’apertura a destra. Muoviti verso destra. Non

appena il tuo personaggio uscirà dallo schermo, BAM! Ti ritroverai in una nuova stanza rossa,

entrando dal lato sinistro. Hai appena creato un mondo più grande del singolo schermo!

Pagina 81 di 236

10.3 – I Segreti del Kernel: Grafica Multicolore
Finora, i nostri eroi e i nostri mondi hanno avuto un aspetto un po’ monocromatico. player0 è di

un colore, player1 di un altro, e il playfield di un altro ancora. Ma come facevano giochi come

Pitfall! ad avere un protagonista con la maglietta di un colore e i pantaloni di un altro?

In batari basic la risposta non si trova in un comando, ma in un accordo speciale che possiamo

fare con il “motore” del nostro gioco: il Kernel. Possiamo chiedere al kernel di usare delle

versioni modificate di se stesso, sbloccando nuove capacità grafiche. Ma attenzione, tutto questo

ha un prezzo! Queste “versioni” si attivano con la direttiva set kernel_options.

player0 e player1 possono avere un solo colore, definito da COLUP0, COLUP1. Possiamo però

chiedere al kernel di usare il tempo che normalmente dedicherebbe al missile0 e missile1 per

cambiare il colore di player0 e player1 riga per riga mentre li disegna.

Basta aggiungere:

 set kernel_options playercolors player1color

all’inizio del programma. Ora, oltre ai blocchi player0: player1:, puoi definire due nuovi blocchi

player0color: player1color: dove specifichi un colore esadecimale per ogni riga degli sprite. Il

Prezzo da Pagare: Il kernel non ha più tempo per gestire missile0 e missile1. Perdi

completamente l’uso di missile0 e missile1!

Il nostro Playfield può avere un solo colore, definito da COLUPF. Possiamo chiedere al kernel di

cambiare il colore del Playfield per ogni riga orizzontale che disegna. Basta Aggiungere:

 set kernel_options pfcolors

e ora puoi definire un blocco pfcolors: dove elenchi una sequenza di colori, uno per ogni riga del

tuo playfield. Questo trucco non ha “prezzi da pagare”.

Ecco un codice di esempio che utilizza player0, player1 e playfield multicolore.

 rem Player0,Player1,playfield multicolor

 set kernel_options playercolors player1colors pfcolors

 set romsize 2k

 COLUBK = $00 ; Sfondo nero

 player0:

 %0010100 ; ultima riga player 0

 %0010100

 %0010100

 %1001001

 %0111110

 %0001000

 %0011100

 %0011100 ; prima riga player 0

Pagina 82 di 236

end

 player1: ; ultima riga player1

 %0010100

 %0010100

 %0010100

 %1001000

 %0111111

 %0001001

 %0011100

 %0011100 ; prima riga player1

end

 player0color:

 $44 ; colore ultima riga player0

 $44

 $44

 $3E

 $3E

 $3E

 $44

 $44 ; colore prima riga player 0

end

 player1color:

 $1E ; colore ultima riga player1

 $1E

 $1E

 $60

 $60

 $60

 $1E

 $1E ; colore prima riga player1

end

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ; riga 0 playfield

 X.....X........................X

 X.....X........................X

 X.....X.....................X..X

 X...........................X..X

 X........................XXXX..X

 X...............................

Pagina 83 di 236

 X...............................

 XXXXXXXXXXXX.....XXXXXXXXXXXXXXX

 X..............................X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ; riga 10 playfield

end

 pfcolors:

 $08 ; colore riga 0 playfield

 $0C ; colore riga 1 playfield

 $08 ; ...

 $0A

 $0A

 $0C

 $08

 $0A

 $0A

 $0A

 $D4 ; colore riga 10 playfield

end

 player0x = 30

 player0y = 64

 player1x = 50

 player1y = 64

main_loop

 COLUPF = $08 ; colore riga 0 playfield

 drawscreen

 goto main_loop

Pagina 84 di 236

Le Opzioni del Kernel

Le kernel_options sono potenti, ma non tutte le combinazioni sono possibili. Il

Kernel Standard supporta solo alcune configurazioni specifiche. Se provi a usare

una combinazione non valida, il compilatore ti darà un errore.

Ecco le combinazioni valide più comuni per ottenere personaggi e sfondi

multicolore:

set kernel_options player1colors

Effetto: Solo player1 è multicolore.

Costo: Perdi completamente l’uso di missile1.

set kernel_options playercolors player1colors

Effetto: Sia player0 che player1 sono multicolore.

Costo: Perdi completamente l’uso di entrambi i missili, missile0 e missile1.

set kernel_options pfcolors

Effetto: Il playfield è multicolore.

Costo: nullo!

set kernel_options playercolors player1colors pfcolors

Effetto: player0, player1 e il playfield sono multicolore.

Costo: Perdi completamente l’uso di entrambi i missili, missile0 e missile1.

Variare le Altezze delle righe del playfield: pfheights

Di default, ogni riga del Playfield ha la stessa altezza. Ma con l'opzione del kernel

pfheights, possiamo specificare un'altezza diversa per ogni riga. Questo permette di

creare sfondi con un aspetto molto più organico e meno "a blocchi".

Come Funziona:

Aggiungi l'opzione all'inizio del programma: set kernel_options pfheights

Definisci un blocco pfheights: dove specifichi l'altezza in pixel di ogni riga, di cui la

prima deve essere per forza di 8 pixel e la somma totale deve essere 88, ad esempio:

 pfheights:

 8

 8

 15

 1

 8

 8

 8

 8

 8

 8

Pagina 85 di 236

 8

end

Questa opzione può essere usata in combinazione con pfcolors ma in tal caso devi

definire entrambi una volta sola al di fuori del main_loop.

L’Eroe Arcobaleno: Prendi un personaggio che hai disegnato e prova a dargli

colori diversi per la testa, il corpo e le gambe usando playercolors e il blocco

player0color: . Ricorda che non potrai più usare missile0!

L’Orizzonte Digitale: Prendi uno degli sfondi che hai creato e trasformalo in un

paesaggio con un cielo, un orizzonte e un terreno usando pfcolors. Prova a creare

una gradazione di blu per il cielo per dare un senso di profondità.

Pagina 86 di 236

Capitolo 11 – L’Illusione della Fluidità: Movimento Sub-Pixel e Fisica

Finora, i nostri personaggi si sono mossi di un pixel intero alla volta, creando un movimento un

po’ “scattoso”. Ma nei migliori classici dell’Atari 2600 i personaggi sembrano muoversi e

scorrere in modo fluido. Come facevano?

La risposta è una delle “magie” più importanti del game design: simulavano i numeri decimali.

In questo capitolo, impareremo questa tecnica, chiamata aritmetica a virgola fissa, che

trasformerà i movimenti dei nostri eroi in animazioni fluide e professionali.

11.1 – Precisione decimale
Immagina di voler muovere un oggetto molto lentamente. La soluzione è separare la posizione

“reale” del personaggio (memorizzata con precisione decimale) dalla sua posizione “visibile”

sullo schermo (che può essere solo intera). L’aritmetica a virgola fissa (fixed point) ci permette

di fare esattamente questo.

11.2 – L’Aritmetica a Virgola Fissa (8.8) in Batari Basic
Per usare questa tecnica, dobbiamo includere una libreria speciale all’inizio del nostro

programma:

 include fixed_point_math.asm

Questo ci permette di definire variabili chiamate 8.8, perchè usano due variabili byte (a..z): una

per contenere la parte intera del numero decimale (8 bit) e una per la parte frazionaria (8 bit). Le

dichiariamo con dim usando una sintassi speciale:

 dim v1 = a.b ; 'a' è la parte intera, 'b' la parte frazionaria

Le variabili 8.8 si usano tipicamente per le coordinate degli oggetti. Ad esempio:

 dim hero_x_fixed = a.b

In questo esempio: la variabile a conterrà il numero di pixel (coordinata x) interi (da 0 a 255); la

variabile b conterrà la frazione di pixel (dove b=128 rappresenta 0.5, b=64 rappresenta 0.25, e

così via. Ovvero, se b è maggiore di 0, la parte frazionaria del numero è 128 diviso b).

Facciamo degli esempi di assegnazione e somma:

 hero_x_fixed = 60.5 ; in automatico, batari basic assegna a=60 e b=128

 hero_x_fixed = hero_x_fixed + 0.5 ; hero_x_fixed diventa 61 (in automatico, batari basic fa il

calcolo e assegna a=61 b=0)

 hero_x_fixed = hero_x_fixed + 0.25 ; hero_x_fixed diventa 61.25 (in automatico, batari basic fa

 il calcolo e assegna a=61 b=64)

Se ora scriviamo:

 x = hero_x_fixed ; x, essendo una variabile da 0 a 255, “prende” solo la parte intera,ovvero 61

Allo stesso modo:

 player0x = hero_x_fixed ; player0x diventa 61 (la parte frazionaria è “invisibile”)

Vediamo ora un esempio completo:

Pagina 87 di 236

 dim hero_x_fixed = a.b

 hero_x_fixed = 80

main_loop

 if joy0right then hero_x_fixed = hero_x_fixed + 0.5

 player0x = hero_x_fixed ; Assegna SOLO la parte intera a player0x

 drawscreen

 goto main_loop

Cosa succede frame per frame?

Frame 1: hero_x_fixed parte da 80.0, player0x è 80.

Frame 2: Supponiamo il giocatore muova il joystick a “destra”. hero_x_fixed diventa 80.5. La

parte intera è ancora 80, quindi player0x rimane 80. Lo sprite non si è mosso!

Frame 3: Ancora destra. hero_x_fixed diventa 81.0. La parte intera ora è 81, quindi player0x

diventa 81. Lo sprite si è mosso di un pixel!

Lo sprite si è mosso di un pixel solo dopo due frame. L’effetto visivo è un movimento più

liscio, alla metà della velocità.

11.3 – Platform Hero – Fisica Realistica con Salto e Gravità
Il movimento sub-pixel non serve solo per lo spostamento orizzontale. È la chiave per creare una

fisica di base realistica, come il salto e la gravità. Un personaggio che salta non si muove a

velocità costante: accelera verso l’alto, rallenta, si ferma per un istante e poi riaccelera verso il

basso.

In questo esempio, creeremo un motore fisico completo per un personaggio platform,

implementando movimento orizzontale, salto e gravità. Useremo:

• Posizioni a Virgola Fissa (hero_x_fixed, hero_y_fixed): Terranno traccia della

posizione “reale” del personaggio.

• Velocità Verticale (y_velocity): Una variabile a virgola fissa che rappresenta la velocità

di salita/discesa.

• Gravità: Un piccolo valore che aggiungeremo a y_velocity ad ogni frame, tirando

costantemente il personaggio verso il basso.

• Salto: Un forte valore negativo che assegneremo a y_velocity quando il giocatore salta,

spingendolo verso l’alto.

• Controllo a Terra (on_ground): Un flag per capire se permettere al giocatore di saltare

o no (solo se sta toccando il suolo).

 rem Platform Hero - Fisica con Virgola Fissa

 set romsize 2k

 include fixed_point_math.asm

 dim hero_x_fixed = a.b ; Posizione X a virgola fissa

 dim hero_y_fixed = c.d ; Posizione Y a virgola fissa

 dim y_velocity = e.f ; Velocità Y a virgola fissa

Pagina 88 di 236

 dim on_ground = g ; 1 = a terra, 0 = in aria

 rem --- Inizializzazione ---

 hero_x_fixed = 80

 hero_y_fixed = 64

 y_velocity = 0.0

 player0:

 %0010100

 %0010100

 %0010100

 %1001001

 %0111110

 %0001000

 %0011100

 %0011100

end

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X.....X........................X

 X.....X........................X

 X.....X........................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 COLUP0 = $1E

 COLUBK = $86

 COLUPF = $1E

main_loop

 gosub handle_input

 gosub handle_physics

 gosub move_hero

 drawscreen

 goto main_loop

Pagina 89 di 236

 rem ========= SUBROUTINES =========

handle_input

 rem Movimento orizzontale

 if joy0left && hero_x_fixed > 16 then hero_x_fixed = hero_x_fixed - 1

 if joy0right && hero_x_fixed < 134 then hero_x_fixed = hero_x_fixed + 1

 rem Salto: si può saltare solo se si è a terra

 if joy0fire && on_ground then y_velocity = -4 ; impulso iniziale verso l'alto

 return

handle_physics

 rem 1. Applica la gravità (tira sempre verso il basso)

 y_velocity = y_velocity + 0.3

 rem 2. Applica il movimento verticale (velocità e posizione)

 hero_y_fixed = hero_y_fixed + y_velocity

 rem 3. Controlla se il giocatore è atterrato

 if hero_y_fixed < 64 then on_ground = 0 ; In aria

 if hero_y_fixed >= 64 then hero_y_fixed = 64 : y_velocity = 0.0 : on_ground = 1 ; Impedisce di

sprofondare, ferma la caduta

 return

move_hero

 player0x = hero_x_fixed ; Assegna SOLO la parte intera alla posizione visibile

 player0y = hero_y_fixed

 return

Come Funziona: Premi F5. Usa il joystick (tasti freccia) per muovere il personaggio a destra e a

sinistra. Premi il pulsante di fuoco (barra spaziatrice): l’eroe eseguirà un salto perfetto, con una

curva parabolica realistica, e atterrerà dolcemente. Noterai che non potrai saltare di nuovo finché

non avrà toccato terra. Hai appena creato un motore fisico da platform.

Pagina 90 di 236

Capitolo 12 – Il Cruscotto del Gioco: Punteggi, Vite e Barre di Stato

Ogni grande avventura ha bisogno di un cruscotto. Come fa un esploratore a sapere quanti tesori

ha raccolto, quante vite gli sono rimaste o quanta energia ha il suo scudo? Queste informazioni

vitali vengono mostrate attraverso l’HUD (Heads-Up Display), l’interfaccia grafica che si

sovrappone all’azione.

In questo capitolo, impareremo a costruire il cruscotto del nostro gioco, usando gli strumenti che

Batari Basic ci mette a disposizione: il classico punteggio a sei cifre e le versatili barre di stato.

12.1 – Il Punteggio Tradizionale: Il Comando score
Il modo più classico per mostrare i punti è usare la variabile speciale score. È una variabile fissa

a 6 cifre, visualizzata permanentemente nella parte inferiore dello schermo. A differenza delle

normali variabili (0-255), score può gestire numeri da 0 a 999999.

Funziona con uno speciale formato numerico chiamato BCD (Binary-Coded Decimal). Per ora, ti

basta sapere che puoi solo aggiungere o sottrarre solo valori interi usando l’aritmetica standard di

somma e sottrazione (es. score = score + 10).

Attenzione! score non è una variabile normale e non la puoi utilizzare negli if o per

fare calcoli dentro a espressioni aritmetiche o usarla con altre variabili! Ad esempio:

 score = a ; NON FUNZIONA!

 score = score + b ; NON FUNZIONA!

 if score > 100 then gosub vittoria ; NON FUNZIONA!

In sintesi, dovrai usare altre variabili per “tener conto” di eventuali bonus o eventi

nel tuo gioco che vorresti far dipendere dallo score.

Le tecniche per controllare score sono abbastanza complesse e richiedono molti

calcoli e tempo di CPU. Parleremo nell’appendice C di una delle possibili tecniche.

Per far apparire il punteggio, devi fare due cose nel tuo main loop:

1. Impostare un colore: Usa il registro scorecolor. Se non lo imposti, lo score sarà nero e

invisibile.

2. Assegnare un valore: Dai un valore iniziale alla variabile score.

 rem Attivare lo Score

 set romsize 2k

 score = 0

main_loop

 scorecolor = $1E ; Colore giallo per il punteggio

 if joy0fire then score = score + 100

 drawscreen

 goto main_loop

Premi F5. Vedrai “000000” in fondo allo schermo. Premi fuoco e lo vedrai aumentare. Hai

appena creato il tuo primo contatore di punti!

Pagina 91 di 236

12.2 – Oltre i Numeri: Le Barre di Stato pfscore
A volte i numeri non bastano. Potresti voler mostrare le vite come icone o l’energia come una

barra che si svuota. Per questo, Batari Basic offre le pfscore bars. Sono due aree grafiche a 8

blocchi, situate a sinistra e a destra dello score, che puoi controllare.

Per attivarle, devi usare il comando const pfscore = 1 all’inizio del programma. Ora hai accesso

a tre nuove variabili:

• pfscorecolor: Imposta il colore di entrambe le barre.

• pfscore1: Controlla la barra di sinistra

• pfscore2: Controlla la barra di destra

Ogni barra è composta da 8 bit. Impostando un bit a 1 accendi il blocco corrispondente. Il modo

più intuitivo per controllarle è usare i numeri binari (%).

12.3 – Barra della Vita e Contatore Vite
Vediamo come usare le barre di stato in un gioco per creare un HUD completo.

Useremo la barra sinistra (pfscore1) per mostrare fino a 3 vite come puntini.

Useremo la barra destra (pfscore2) come una barra della salute che si svuota.

 rem HUD Completo

 set romsize 2k

 const pfscore = 1 ; attiva barre laterali

 dim lives_bar = a

 dim health_bar = b

 dim retainleft = c

 dim retainright = d

 rem --- Inizializzazione ---

 lives_bar = %00010101 ; 3 vite (i bit 0, 2, 4 sono accesi)

 health_bar = %11111111 ; Salute piena (tutti i bit accesi)

main_loop

 rem --- Logica di Gioco (Simulata) ---

 rem Se premi sinistra, perdi salute

 if !joy0left then retainleft = 0

 if joy0left && retainleft = 0 then health_bar = health_bar / 2 : retainleft = 1

 rem Se premi destra, perdi una vita

 if !joy0right then retainright = 0

 if joy0right && retainright = 0 then lives_bar = lives_bar / 4 : retainright = 1

 rem Se premi fire ripristina valori iniziali

 if joy0fire then lives_bar = %00010101 : health_bar = %11111111 : score = score + 1

 rem --- Disegno HUD ---

 scorecolor = $1E ; colore giallo

 pfscorecolor = $86 ; colore blu

 pfscore1 = lives_bar

 pfscore2 = health_bar

 drawscreen

 goto main_loop

Premi F5. Ora hai un HUD funzionale! Premi sinistra (joy0left) per vedere la barra della salute

diminuire e destra (joy0right) per vedere le vite sparire una a una.

Pagina 92 di 236

La Magia della Divisione Binaria

Ti sei chiesto perché usiamo / 2 e / 4? È un trucco geniale che sfrutta la matematica

binaria.

Barra della Salute (/ 2): Dividere un numero per 2, in binario, è equivalente a

“spostare” tutti i suoi bit di una posizione verso destra (shift a destra). Il bit più a

destra “cade” e viene perso, e a sinistra entra uno 0. Applicato alla nostra barra

%11111111, questo la svuota gradualmente, un pezzetto alla volta: %01111111,

%00111111, e così via (attenzione: per pfscore2 il bit più a destra è quello

visualizzato più a sinistra!).

Barra delle Vite (/ 4): Dividere per 4 equivale a fare uno shift a destra di due

posizioni. Nel nostro schema %00010101, dove le vite sono i bit 0, 2 e 4, questo

“salto” di due posizioni spegne un puntino alla volta in modo netto.

12.4 – Un’Alternativa alle Vite: Il Sistema di Danni
Finora abbiamo parlato di “vite”: perdi una vita, il gioco si resetta. Ma molti giochi, specialmente

quelli di corse o di combattimento, usano un sistema diverso: i punti danno. Invece di avere un

numero discreto di tentativi, il giocatore ha un’unica “barra della vita” (o un contatore invisibile)

che si riempie o svuota a ogni colpo. Il gioco termina solo quando i danni raggiungono una

soglia. Questa tecnica crea un feeling di gioco diverso, più orientato alla sopravvivenza.

Realizzarla è molto semplice. Invece di un contatore di vite che scende, usiamo un contatore di

danni che sale.

 dim damage_counter = c

 max_damage = 60

 ; ... nel main loop, dopo drawscreen ...

 if collision(player0, enemy) then damage_counter = damage_counter + 1

 rem Controlla se il gioco è finito

 if damage_counter >= max_damage then goto game_over

L'Effetto Sfumato (scorefade)

Vuoi dare al tuo punteggio un aspetto più professionale e tridimensionale, tipico di

molti giochi classici? Batari Basic offre un effetto speciale chiamato scorefade. Se

attivato, aggiunge una sottile ombreggiatura ai numeri dello score, dando loro un

senso di profondità. Basta aggiungere const scorefade = 1 all'inizio del tuo

programma.

 rem Esempio di Score Sfumato

 set romsize 2k

 const scorefade = 1

Pagina 93 di 236

main_loop

 scorecolor = $9C ; Viola

 score = 123456

 drawscreen

 goto main_loop

Confrontando il risultato con e senza scorefade, noterai che i numeri appaiono meno

"piatti" e più integrati con lo sfondo.

L'Effetto Arcobaleno: un Classico Atari

La funzione scorefade ha un "effetto collaterale" molto amato dai programmatori

dell'epoca. Se, invece di usare un colore fisso, incrementi costantemente la variabile

scorecolor ad ogni frame, otterrai il classico effetto arcobaleno, un trucco iconico

dell'era Atari!

 set romsize 2k

 const scorefade = 1

 dim color_timer = a

main_loop

 color_timer = color_timer + 1

 scorecolor = color_timer

 score = 123456

 drawscreen

 goto main_loop

Questo codice farà ciclare i colori del punteggio attraverso l'intera tavolozza,

creando un effetto psichedelico e vibrante, spesso usato nelle schermate dei titoli o

per celebrare un record.

Attenzione! Se nel tuo gioco hai attivato le barre di stato con const pfscore = 1,

l'effetto scorefade non è disponibile. Devi scegliere quale delle due funzionalità

grafiche usare per il tuo HUD, non possono coesistere.

Pagina 94 di 236

Capitolo 13 – Ottimizzazione e Debug Avanzato: La Caccia ai “Bug”

Cosa succede quando qualcosa nel nostro programma va storto? Quando lo schermo inizia a

tremare, un colore lampeggia in modo strano, o il gioco semplicemente si blocca? Benvenuto nel

mondo del debugging, l’arte investigativa di trovare e correggere gli errori, o “bug”, nel nostro

programma.

Inoltre, dobbiamo assicurarci che il nostro gioco non solo funzioni, ma funzioni bene. Deve

essere veloce e reattivo. Questo processo si chiama ottimizzazione. In questo capitolo,

indosseremo il cappello da detective e impareremo a rispettare la legge più importante di tutte: la

corsa contro il raggio.

13.1 – Il Nemico Numero Uno: Lo “Screen Roll”
Il problema più temuto da ogni programmatore Atari è il famigerato “screen roll” (scorrimento

dello schermo) o “jitter” (tremolio). Lo schermo trema, sfarfalla o inizia a scorrere

verticalmente senza sosta.

Questo è quasi sempre un problema di tempo. Significa che la logica nel tuo main loop (il

codice tra drawscreen e goto main) sta impiegando più del suo “budget” di cicli CPU (circa

2700). La CPU è così impegnata a fare calcoli che arriva in ritardo all’appuntamento con il

raggio del televisore, e la sincronizzazione dell’immagine salta.

La soluzione è ottimizzare!

13.2 – Rimanere nel Budget: Strategie di Ottimizzazione
Cosa fare se il gioco è troppo lento? Non devi per forza eliminare delle funzionalità. Spesso

basta distribuire il carico di lavoro in modo più intelligente.

Strategia 1: Sposta il Lavoro nel VBlank

Questa è la tecnica di ottimizzazione più importante. Chiediti: “Questa operazione deve essere

eseguita per forza in questo esatto frame?”

• Il movimento del giocatore? Sì, deve essere istantaneo.

• Decidere la prossima mossa di un nemico che si trova dall’altra parte dello schermo?

Forse no.

Tutta la logica che non è “urgente” può essere spostata in una sezione speciale alla fine del tuo

programma, chiamata vblank. Il Vertical Blank è quel breve momento in cui il raggio del

televisore è “spento” e sta tornando in cima allo schermo. Durante questo intervallo, la CPU ha a

disposizione circa 1675 cicli extra per eseguire logica “pesante” senza interferire con il disegno.

 ; ...

 ; ... il tuo main loop finisce qui ...

 goto main_loop

vblank

 rem Sposta qui la logica "pesante" e non urgente

 gosub update_enemy_ai_logic

 return

Questo libera immediatamente cicli preziosi nel tuo main loop, dove la velocità è più critica.

Pagina 95 di 236

Strategia 2: L’Alternanza dei Frame

Invece di aggiornare l’IA di tutti i nemici 60 volte al secondo, perché non aggiornarne metà in un

frame e l’altra metà nel frame successivo? L’occhio umano non noterà quasi mai la differenza,

ma il carico di lavoro sulla CPU per ogni singolo frame sarà dimezzato!

 dim frame_counter = h

 ; ... nel main loop ...

 frame_counter = frame_counter + 1

 rem Aggiorna il Nemico 1 solo nei frame "pari"

 if frame_counter{0} then gosub update_enemy1_ai

 rem Aggiorna il Nemico 2 solo nei frame "dispari"

 if !frame_counter{0} then gosub update_enemy2_ai

Qui usiamo il bit 0 di frame_counter per distinguere tra frame pari (i numeri pari hanno sempre il

bit 0 = 0) e dispari (i numeri dispari hanno sempre il bit 0 = 1), alternando l’aggiornamento dei

nemici.

13.3 – La Lente d’Ingrandimento del Detective: Il Debug Visivo
A volte il gioco non trema, ma si comporta in modo strano. Uno sprite scompare, un colore è

sbagliato, un punteggio non si aggiorna. Come facciamo a sapere cosa c’è dentro una variabile

mentre il gioco sta girando?

Non abbiamo un debugger sofisticato, ma possiamo usare la grafica stessa per “visualizzare” i

dati!

Trucco 1: Visualizzare un Valore con i Colori Questo è il trucco più semplice e veloce. Se

vuoi controllare il valore della variabile a, assegnalo temporaneamente a un registro colore.

 rem DEBUG: Mostra il valore di 'a' come colore di sfondo

 COLUBK = a

Ora, mentre giochi, il colore dello sfondo cambierà in base al valore di a. Se il colore cambia

come ti aspetti, la variabile sta funzionando. Se rimane fisso o cambia in modo strano, hai

trovato un problema!

Trucco 2: Usare lo score come Monitor Se il tuo gioco usa il punteggio, puoi usarlo come

“monitor” di debug temporaneo, per capire se il codice “passa” nel punto giusto.

 rem DEBUG: Mostra il valore 999 nello score

 score = 999

Trucco 3: Usare i Suoni A volte vuoi sapere se una certa parte del codice viene eseguita.

Associa un suono a quell’evento!

 ; DEBUG: Suono di collisione

 if collision(player0, enemy) then gosub handle_hit: AUDV0 = 10 : AUDC0 = 12 : AUDF0 = 10

Se senti il “beep” nel momento sbagliato (o non lo senti affatto), sai che la tua logica di

collisione ha un problema.

Pagina 96 di 236

Capitolo 14 – E Adesso?

Congratulazioni!
Hai completato il tuo viaggio guidato attraverso le basi di Batari Basic. Ma questo non è un

punto di arrivo. È un punto di partenza. Hai appena aperto una porta su un universo vasto e

affascinante. Questo manuale ti ha fornito le fondamenta, ma il mondo della programmazione

Atari è molto più grande. Abbiamo volutamente mantenuto il nostro viaggio focalizzato sul

Kernel Standard e su giochi contenuti in 4K di ROM, per darti le basi più solide possibili.

Ora, cosa c’è oltre? Cosa puoi fare adesso con le tue nuove abilità? Questo capitolo è la tua

mappa per le prossime avventure nel mondo della programmazione retro.

14.1 - Diventa un Maestro di Batari Basic
Ecco un assaggio delle tecniche più avanzate che i maestri del codice usano per trasformare un

buon gioco in un capolavoro. Per approfondirle, le risorse della community sono il posto

migliore dove cercare.

• Funzioni (function) e Macro (macro): Oltre a gosub, esistono modi ancora più potenti

per organizzare il codice. Le funzioni sono come subroutine che possono “restituire” un

risultato, mentre le macro ti permettono di creare i tuoi comandi personalizzati, rendendo

il codice incredibilmente pulito.

• Matematica a 16 bit e BCD (**, //, dec): Per calcoli più complessi, come gestire numeri

più grandi di 255 o lavorare con il punteggio in modo sicuro, esistono operatori speciali

per la matematica a 16 bit e per l’aritmetica BCD (dec).

• Spremere Ogni Bit: Le Variabili Nybble: I maestri sanno come stipare due contatori

(con valori da 0 a 15) in un singolo byte, trattandolo come due metà da 4 bit (un

“nybble”). È un’arte di ottimizzazione estrema.

• Variabili 4.4: Oltre alle variabili 8.8 (8 bit per la parte intera, 8 per quella frazionaria), la

libreria fixed_point_math.asm ci offre un altro strumento utile per situazioni specifiche:

le variabili a virgola fissa 4.4, che permettono di risparmiare preziosa memoria RAM.

14.2 - Guardare “Sotto il Cofano”: Piegare l’Hardware
Le vere magie avvengono quando si inizia a “parlare” all’hardware in modi che i creatori

originali non avevano previsto.

• Espandere la Memoria: il Bankswitching: il bankswitching è il trucco che permette di

creare cartucce da 8K, 16K o addirittura 32K. Un codice ben strutturato può “delegare” il

lavoro a banchi di memoria ROM diversi, creando un’architettura a staffetta per gestire

giochi enormi.

• Grafica da Maestri: Kernel Alternativi e Chip Speciali: Il nostro manuale si è basato

sul Kernel Standard, ma è solo l’inizio. Esistono kernel specializzati come il Multisprite

Pagina 97 di 236

Kernel (per mostrare più di 2 sprite sulla stessa riga) o il potentissimo DPC+ Kernel

(per grafica ad alta risoluzione e fino a 10 sprite multicolore).

• Il Potere Assoluto: Assembly: Per il controllo totale, i programmatori scendono al

“livello del metallo” e scrivono in Assembly 6507, il linguaggio nativo della CPU. Con

Batari Basic, puoi inserire piccole porzioni di codice assembly per ottenere la massima

velocità o creare effetti grafici impossibili altrimenti.

• Trucchi da Hacker: Rilevare Controller Extra: La community ha scoperto segreti

hardware incredibili, come la possibilità di rilevare se un controller Sega Genesis è

collegato e usare i suoi pulsanti extra per aggiungere più azioni al tuo gioco!

14.3 - Unisciti alla Community: Non Sei Solo!
Una delle cose più belle dello sviluppare per Atari 2600 oggi è che non sei solo. Esiste una

community globale incredibilmente attiva, amichevole e pronta ad aiutare altri appassionati. Le

risposte a tutte le tue future domande si trovano qui.

• AtariAge Forums: È il cuore pulsante della community. Nelle sezioni dedicate allo

sviluppo per 2600 e al Batari Basic, puoi fare domande, condividere i tuoi progressi,

trovare tutorial e scoprire i nuovi, incredibili giochi realizzati da altri.

• La Pagina di Batari Basic di Random Terrain: Questa è l’enciclopedia definitiva,

piena di documentazione, esempi e guide approfondite.

• GitHub: Il codice sorgente del compilatore Batari Basic e di molti giochi homebrew è

disponibile qui. Leggere il codice di altri sviluppatori è uno dei modi migliori per

imparare.

Non aver paura di fare domande. La community apprezza i nuovi arrivati ed è sempre felice di

condividere la propria conoscenza ed esperienza.

14.4 - Giocare sulla TV di Casa: L’Esperienza Autentica
Testare i giochi sull’emulatore Stella è fantastico, ma niente batte la sensazione di giocare alla

propria creazione su un vero televisore. Oggi, questo è più facile che mai.

• L’Atari 2600+: Di recente, Atari ha rilasciato una nuova console moderna compatibile

con le vecchie cartucce, ma con un’uscita HDMI per qualsiasi TV.

• La Cartuccia Magica (Flash Cart): Con una “cartuccia magica” moderna come la

famosa Harmony Cartridge, puoi giocare i tuoi giochi su una console originale o

moderna. Il processo è semplice:

1. Compili il tuo gioco con Batari Basic (premendo F5) per creare il file .bin.

2. Copi questo file .bin su una scheda SD.

Pagina 98 di 236

3. Inserisci la scheda SD nella Harmony Cartridge.

4. Inserisci la Harmony Cartridge nella tua console.

5. Accendi e giochi la tua creazione sul grande schermo!

La memoria “sporca” nel vero hardware

Fai attenzione che a differenza degli emulatori, in un vero Atari 2600 il valore

iniziale delle variabili non è 0 ma è sconosciuto. Per essere sicuro che i tuoi

programmi funzioneranno anche su vero hardware, azzera manualmente il valore di

tutte le variabili questo codice:

 a = 0 : b = 0 : c = 0 : d = 0 : e = 0 : f = 0 : g = 0 : h = 0 : i = 0

 j = 0 : k = 0 : l = 0 : m = 0 : n = 0 : o = 0 : p = 0 : q = 0 : r = 0

 s = 0 : t = 0 : u = 0 : v = 0 : w = 0 : x = 0 : y = 0 : z = 0

14.5 – Programmi da provare e appendici
Nella prossima parte di questo manuale troverai diversi listati di giochi che utilizzano tutte le

tecniche che hai visto. Ora sei perfettamente in grado di comprenderne il funzionamento! Inoltre

alla fine del manuale troverai appendici con riassunti, ulteriori informazioni e tecniche avanzate.

Buon divertimento!

Pagina 99 di 236

Parte 3: Giochi da provare

Cartucce originali dell’Atari 2600 (Immagine: mitchelaneous.com)

Pagina 100 di 236

Pagina 101 di 236

Ogni programma che segue è un gioco da provare, una “cartuccia digitale” che mette in pratica le

tecniche che hai imparato.

Considera ogni listato come un progetto da “smontare”. Leggi l’introduzione, analizza le

tecniche utilizzate e vai a ripassare i capitoli corrispondenti se hai qualche dubbio. Poi, tuffati nel

codice. Non aver paura di modificare, sperimentare e “rompere” le cose! Questo è il modo

migliore per trasformare la teoria in vera abilità.

I listati completi di questi giochi si trovano subito dopo le scheda di presentazione.

Ricordatevi di aggiungere una riga vuota alla fine del programma se fate copia-incolla dei

listati!

1. Simple Pong (1 vs. CPU)
• Il Gioco: La versione più pura del classico che ha dato inizio a tutto. Controlli la

racchetta destra, il computer controlla quella sinistra. Un punto di partenza eccellente per

capire la fisica di base e l’IA.

• Tecniche Principali Utilizzate:

– Fisica di Base: Il movimento e il rimbalzo della palla sono gestiti invertendo le

variabili di velocità (vedi Capitolo 8).

– IA Semplice: La racchetta del computer segue ciecamente la palla (player1y =

bally), una forma basilare di intelligenza artificiale (vedi Capitolo 3).

– Struttura a Subroutine: La logica per i punti e le collisioni è organizzata in

subroutine pulite (vedi Capitolo 5).

– Clamping: Le racchette sono bloccate all’interno del campo da gioco (vedi

Capitolo 3).

–

Pagina 102 di 236

2. Advanced Pong (Pong con Ostacoli – 1 vs 1)
• Il Gioco: Una variante di Pong più dinamica. Il giocatore può muoversi in 4 direzioni e il

campo contiene ostacoli statici che influenzano la traiettoria della palla, aggiungendo

imprevedibilità.

• Tecniche Principali Utilizzate:

– Movimento a 4 Direzioni: Il giocatore non è più vincolato all’asse verticale,

aggiungendo strategia (vedi Capitolo 3).

– Interazione con il Playfield: La palla ora può collidere con gli ostacoli del

playfield (collision(ball, playfield) -vedi Capitolo 4).

– Fisica di Rimbalzo Avanzata: Quando la palla colpisce un ostacolo, vengono

invertite entrambe le componenti della sua velocità.

3. Dynamic Pong (Racchetta che si Accorcia – 1 vs CPU)
• Il Gioco: Questa versione introduce una meccanica di difficoltà crescente. Ogni volta che

il giocatore perde una vita, la sua racchetta diventa più corta.

• Tecniche Principali Utilizzate:

– Grafica Dinamica dello Sprite: L’altezza dello sprite player0 non è fissa. Il

programma usa subroutine per ridefinire la grafica dello sprite in tempo reale, in

base alle vite (vedi Capitolo 6).

– Indicatore di Stato Visivo: La dimensione della racchetta stessa funge da HUD,

comunicando istantaneamente al giocatore quante vite gli rimangono (vedi

Capitolo 14).

4. Killer Acorn (Ghianda Assassina)
• Il Gioco: Un classico sparatutto in arena fissa. Sei una ghianda, un nemico ti insegue.

Spara per guadagnare punti, evita di essere toccato per non perdere vite.

• Tecniche Principali Utilizzate:

– Animazione a Frame Multipli: Il nemico è animato con quattro sprite diversi,

gestiti da timer software (vedi Capitolo 6).

– IA di Inseguimento: Il nemico si muove attivamente verso il giocatore.

– Gestione Proiettile Singolo: Un trucco comune per gestire lo sparo, usando la

posizione del missile come un flag (vedi Capitolo 5).

– Uso di rand: La casualità viene usata per rendere imprevedibile la riapparizione

del nemico (vedi Capitolo 12 e Appendice C).

Pagina 103 di 236

5. Simple Soccer (1 vs 1)
• Il Gioco: Un semplice gioco di calcio/hockey per due giocatori, che introduce la grafica

multicolore e la gestione del possesso palla.

Basato su “Fifa 1977” di https://8bitworkshop.com/

• Tecniche Principali Utilizzate:

– Opzione del Kernel player1colors: Questa opzione viene usata per dare a

player1 un aspetto multicolore, sacrificando l’uso di missile1 (vedi Capitolo 10).

– Gestione del Possesso Palla: Una variabile (p) funge da flag per determinare

quale giocatore controlla la palla.

– Logica di Salvataggio Posizione: Per gestire le collisioni con i muri in modo

robusto (vedi Capitolo 4).

6. The Watch (Il Guardiano del Castello)
• Il Gioco: Un gioco complesso che combina difesa, costruzione e combattimento. Il

giocatore deve ricostruire un muro raccogliendo mattoni e difendersi da un mostro.

• Tecniche Principali Utilizzate:

– Opzioni del Kernel Avanzate: pfcolors e pfheights sono usate per creare uno

sfondo ricco di dettagli (vedi Capitolo 10).

– IA con Difficoltà Crescente: La velocità e la resistenza del nemico aumentano

con il progredire dei livelli.

– Interazione Dinamica con il Playfield: Il giocatore modifica il playfield in

tempo reale con pfpixel e pfread (vedi Capitolo 9).

– Aritmetica BCD per lo Score: Il punteggio viene gestito in modo sicuro (vedi

Capitolo 12 e Appendice C).

Pagina 104 di 236

7. Minotaur (schermate multiple)
• Il Gioco: Un’avventura a schermate multiple in cui il giocatore esplora un labirinto,

raccoglie oggetti e combatte un boss.

• Tecniche Principali Utilizzate:

– Esplorazione a Schermate Multiple: Il cuore del gioco, gestito dalla variabile

room (vedi Capitolo 10).

– Sistema di Inventario: I bit-flag (haslance, hasshield) tengono traccia degli

oggetti raccolti (vedi Capitolo 8).

– IA di Pattugliamento: Il Minotauro si muove lungo un percorso predefinito.

8. Snappy
• Il Gioco: Un platform basato sul tempismo, eccellente esempio di come usare una

Macchina a Stati per gestire logiche di gioco complesse.

Basato su: Snappy - an Atari 2600 game by Sebastian Mihai (2012)

• Tecniche Principali Utilizzate:

– Macchina a Stati Complessa: La variabile gamestate è il cervello del gioco,

controllando ogni singola fase dell’azione (vedi Capitolo 7).

– Animazione basata su Timer: L’oscillazione della liana è un esempio di

animazione del playfield (vedi Capitoli 6 e 9).

– Generazione del Seme Casuale (randseed): Tecnica avanzata per rendere

casuale la posizione di partenza (vedi Capitolo 12 e Appendice C).

Pagina 105 di 236

9. Gnamm (movimenti su griglia)
• Il Gioco: Una dimostrazione di come ricreare meccaniche complesse su un hardware

limitato.

• Tecniche Principali Utilizzate:

– Uso Intensivo dei Bit-Flag: La variabile b è un “pannello di controllo” che

gestisce quasi tutta la logica del gioco (vedi Capitolo 8).

– Movimento su Griglia: Il movimento è vincolato a “incroci” specifici (vedi

Capitolo 9).

– Opzione del Kernel pfcolors: Usata per dare al labirinto il suo aspetto bicolore

(vedi Capitolo 10).

10. Highway Racer (corse in Autostrada con aritmetica a virgola fissa)
• Il Gioco: Dimostra come usare l’aritmetica a virgola fissa per creare un senso di velocità

e movimento.

• Tecniche Principali Utilizzate:

– Aritmetica a Virgola Fissa: Il cuore del gioco. Le variabili 8.8 sono usate per

un’accelerazione e uno scorrimento fluidi (vedi Capitolo 11).

– Scrolling Verticale del Playfield: Il comando pfscroll down crea l’illusione della

strada che si muove (vedi Capitolo 9).

– Sistema di Danni: Invece di vite, usa un contatore di “danni” (vedi Capitolo 14).

11. Disc Dog (uso di rand)
• Il Gioco: Un gioco unico e originale ispirato allo sport del “disc dog”. Controlli un cane

che deve prendere al volo un frisbee (player1) lanciato da un lanciatore fuori campo. Il

Pagina 106 di 236

cane può correre e saltare. Se il frisbee cade a terra, perdi una vita. Il gioco è a tempo e

diventa progressivamente più difficile.

• Tecniche Principali Utilizzate:

– IA dell’Oggetto: Il frisbee non si muove in linea retta, ma segue una traiettoria

parabolica simulata, cambiando velocità e altezza in modo casuale, rendendo ogni

lancio imprevedibile (vedi Capitolo 8 e Appendice C per rand).

– Animazione Dinamica: La grafica del cane (player0) cambia in base alla

direzione e all’azione (corsa vs. fermo) (vedi Capitolo 6).

– Interazione Complessa: Il gioco gestisce più stati: il cane che corre, che salta,

che prende il disco e che lo riporta al padrone (il blocco verticale sui lati).

– Manipolazione del Playfield: Il punteggio delle vite e il timer non usano le

variabili score o pfscore, ma vengono disegnati “manualmente” sullo sfondo

usando pfpixel (vedi Capitolo 9).

Pagina 107 di 236

Simple Pong

 rem **

 rem * Simple Pong (1 Giocatore vs. CPU) *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Questa è una versione classica del gioco Pong per un *

 rem * giocatore. L’utente controlla la racchetta destra (player0) *

 rem * muovendola verticalmente per respingere una palla (ball). *

 rem * La racchetta sinistra (player1) è controllata dal computer *

 rem * e segue semplicemente la posizione verticale della palla. *

 rem * L’obiettivo è segnare punti facendo passare la palla oltre la *

 rem * racchetta del computer. Si perde una vita se la palla supera *

 rem * la propria racchetta. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - Fisica di Base: Il movimento della palla è gestito da due *

 rem * variabili di velocità (`ballxvelocity`, `ballyvelocity`). *

 rem * Quando la palla colpisce un muro o una racchetta, la sua *

 rem * velocità viene invertita (`velocita = 0 – velocita`) per *

 rem * simulare un rimbalzo. *

 rem * - Intelligenza Artificiale (IA) Semplice: La racchetta del *

 rem * computer non ha una vera logica, ma si limita a “inseguire” *

 rem * la palla. La sua coordinata Y (`player1y`) viene *

 rem * semplicemente impostata uguale a quella della palla (`bally`)*

 rem * ad ogni frame, rendendola imbattibile a meno che la palla *

 rem * non venga “spinta” via velocemente dopo una collisione. *

 rem * - Gestione delle Collisioni e Subroutine: Il comando *

 rem * `collision()` viene usato per rilevare i contatti. La *

 rem * logica di gestione degli eventi (punto segnato, vita persa, *

 rem * collisione) è organizzata in subroutine (`gosub…return`), *

 rem * mantenendo il `main_loop` pulito e leggibile. *

 rem * - Clamping: Vengono usati dei controlli `if` per “bloccare” *

 rem * (clamping) la posizione delle racchette, impedendo loro di *

 rem * uscire dai limiti superiore e inferiore del campo da gioco. *

 rem **

 rem --- Direttive del Compilatore ---

 set romsize 4k

 rem --- Sezione Definizioni Variabili (Alias) ---

 rem Crea un alias per la velocità orizzontale della palla.

 dim ballxvelocity = a

Pagina 108 di 236

 rem Crea un alias per la velocità verticale della palla.

 dim ballyvelocity = b

 rem ‘q’ è un flag per gestire il primo avvio del gioco.

 q=0

 rem --- Impostazioni Iniziali Grafica ---

 rem Imposta il colore dello sfondo (verde).

 COLUBK = 198

 rem Imposta il colore del playfield (bianco per i bordi).

 COLUPF = 14

 rem Definisce la grafica del campo da gioco (bordi superiore e inferiore).

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 rem Definisce la grafica della racchetta del giocatore (player0).

 player0:

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

end

 rem Definisce la grafica della racchetta del computer (player1).

 player1:

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

Pagina 109 di 236

 %00011000

 %00011000

end

 rem --- Stato 1: Inizializzazione Partita / Round ---

startNewGame

 rem Questa etichetta viene chiamata per iniziare una nuova partita o un nuovo round.

 rem Imposta la posizione iniziale della racchetta del giocatore.

 player0x = 140

 player0y = 49

 rem Imposta la posizione iniziale della racchetta del computer.

 player1x = 15

 player1y = 49

 rem Imposta la posizione iniziale della palla al centro dello schermo.

 ballx = 80

 bally = 45

 rem Imposta la velocità iniziale della palla.

 ballxvelocity = 1

 ballyvelocity = 1

 rem Inizializza il contatore delle vite (non usato nel codice ma presente).

 l=3

 rem Imposta i colori delle racchette. Questi registri sono volatili.

 COLUP0 = 140

 COLUP1 = 28

 rem Controlla se non è la prima partita in assoluto.

 if q=1 then goto gameLoop

 rem Se è la prima partita, imposta il flag e vai alla schermata ‘premi fuoco’.

 q=1

firstgame

 COLUP0 = 140

 COLUP1 = 28

 drawscreen

 if joy0fire then goto gameLoop

 goto firstgame

 rem --- Ciclo di Gioco Principale ---

gameLoop

 rem Reimposta i registri TIA volatili ad ogni frame.

 COLUP0 = 140

 COLUP1 = 28

 rem Disegna il fotogramma corrente.

 drawscreen

Pagina 110 di 236

 rem --- Gestione Input Giocatore ---

 if joy0up then player0y = player0y-1

 if joy0down then player0y = player0y+1

 rem Clamping: impedisce alla racchetta del giocatore di uscire dallo schermo.

 if player0y < 16 then player0y = 16

 if player0y > 79 then player0y = 79

 rem --- IA del Computer ---

 rem La racchetta del computer segue perfettamente la posizione Y della palla.

 player1y = bally

 rem Clamping: impedisce anche alla racchetta del computer di uscire.

 if player1y < 16 then player1y = 16

 if player1y > 79 then player1y = 79

 rem --- Fisica della Palla ---

 rem Aggiorna la posizione della palla in base alla sua velocità.

 ballx = ballx + ballxvelocity

 bally = bally + ballyvelocity

 rem Fa rimbalzare la palla sui bordi superiore e inferiore.

 if bally < 9 then ballyvelocity = 0 - ballyvelocity

 if bally > 77 then ballyvelocity = 0 - ballyvelocity

 rem --- Gestione Collisioni ---

 rem Se la palla colpisce la racchetta del giocatore, chiama la subroutine di collisione.

 if collision(player0, ball) then gosub playercollision

 rem Se la palla colpisce la racchetta del computer, chiama la sua subroutine.

 if collision(player1, ball) then gosub computercollision

 rem --- Gestione Punti e Vite ---

 rem Se la palla supera la racchetta del giocatore, chiama la subroutine ‘vita persa’.

 if ballx > 150 then gosub playerlostlife

 rem Se la palla supera la racchetta del computer, chiama la subroutine ‘punto segnato’.

 if ballx < 5 then gosub playerscores

 rem --- Condizione di Fine Partita ---

 rem Se le vite sono esaurite, vai alla schermata di Game Over.

 if l < 1 then goto gameover

 rem Ripete il ciclo di gioco.

 goto gameLoop

 rem --- Sezione delle Subroutine ---

Pagina 111 di 236

playercollision

 rem Gestisce la collisione tra la palla e il giocatore.

 rem Inverte la velocità orizzontale della palla.

 ballxvelocity = 0 - ballxvelocity

 rem Sposta la palla di qualche pixel per evitare collisioni multiple nello stesso frame.

 ballx = ballx + ballxvelocity*5

 bally = bally + ballyvelocity*5

 return

computercollision

 rem Gestisce la collisione tra la palla e il computer.

 rem Inverte la velocità orizzontale della palla.

 ballxvelocity = 0 - ballxvelocity

 rem Sposta la palla per evitare collisioni multiple.

 ballx = ballx + ballxvelocity*5

 bally = bally + ballyvelocity*5

 return

playerscores

 rem Gestisce l’evento in cui il giocatore segna un punto.

 rem Resetta la posizione della palla al centro.

 ballx = 80

 bally = 45

 rem Resetta la velocità della palla.

 ballxvelocity = 1

 ballyvelocity = 1

 rem Incrementa lo score del giocatore.

 score = score + 10

 return

playerlostlife

 rem Gestisce l’evento in cui il giocatore perde una vita.

 rem Decrementa il contatore delle vite.

 l = l - 1

 rem Resetta la posizione della palla.

 ballx = 80

 bally = 45

 return

 rem --- Stato Finale: Game Over ---

gameover

 rem attende fire per ricominciare.

 rem fai sparire la palla

Pagina 112 di 236

 bally = 110

 COLUP0 = 140

 COLUP1 = 28

 drawscreen

 if joy0fire then goto startNewGame

 goto gameover

Pagina 113 di 236

Advanced Pong

 rem **

 rem * Advanced Pong (1 Giocatore vs. CPU con Ostacoli) *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Questa è una variante del classico Pong, con delle aggiunte *

 rem * per renderlo più dinamico. Il giocatore controlla liberamente *

 rem * la sua racchetta (player0) in quattro direzioni all’interno *

 rem * del campo. Il campo da gioco contiene ostacoli statici *

 rem * (playfield) contro cui la palla può rimbalzare. La racchetta *

 rem * del computer (player1) continua a seguire la palla solo *

 rem * verticalmente. L’obiettivo e la gestione di punti/vite sono *

 rem * identici alla versione base. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - Movimento a 4 Direzioni: A differenza del Pong classico, il *

 rem * giocatore può muovere la sua racchetta sia in orizzontale *

 rem * che in verticale, aggiungendo un elemento strategico. *

 rem * - Interazione con il Playfield: Il campo da gioco non è più *

 rem * solo un bordo, ma contiene ostacoli. Il gioco utilizza *

 rem * `collision(ball, playfield)` per rilevare quando la palla *

 rem * colpisce questi ostacoli. *

 rem * - Fisica di Rimbalzo Avanzata: Quando la palla colpisce un *

 rem * ostacolo del playfield, vengono invertite entrambe le sue *

 rem * componenti di velocità (`ballxvelocity` e `ballyvelocity`), *

 rem * simulando un rimbalzo più complesso rispetto a quello sui *

 rem * bordi. *

 rem * - Definizione di Sprite Complessi: Gli sprite per le *

 rem * racchette sono più grandi e dettagliati rispetto a una *

 rem * semplice linea, utilizzando più righe di dati binari. *

 rem * - Tutte le altre tecniche (IA, gestione collisioni, clamping, *

 rem * subroutine) sono simili alla versione base di Pong. *

 rem **

 rem --- Direttive del Compilatore ---

 set romsize 4k

 rem --- Sezione Definizioni Variabili (Alias) ---

 rem Crea un alias per la velocità orizzontale della palla.

 dim ballxvelocity = a

 rem Crea un alias per la velocità verticale della palla.

 dim ballyvelocity = b

Pagina 114 di 236

 rem ‘q’ è un flag per gestire il primo avvio del gioco.

 q=0

 rem --- Impostazioni Iniziali Grafica ---

 rem Imposta il colore dello sfondo.

 COLUBK = $81

 rem Imposta il colore del playfield (bordi e ostacoli).

 COLUPF = 68

 rem Definisce la grafica del campo da gioco con ostacoli interni.

 rem Nota: ‘x’ minuscolo viene trattato come ‘X’ maiuscolo.

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X...............................

 X............X........X.........

 X...

 X.........................

 X

 ...X......X........X...........X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 rem Definisce la grafica della racchetta del giocatore (player0).

 player0:

 %11111111

 %00011000

 %00011000

 %00011000

 %00111100

 %00111100

 %00111100

 %00011000

 %00011000

 %00011000

 %11111111

end

 rem Definisce la grafica della racchetta del computer (player1).

 player1:

 %01111000

Pagina 115 di 236

 %00011000

 %00011000

 %00011100

 %00011111

 %00011100

 %00011000

 %00011000

 %01111000

end

 rem --- Stato 1: Inizializzazione Partita / Round ---

startNewGame

 rem Questa etichetta viene chiamata per iniziare una nuova partita o un nuovo round.

 rem Imposta la posizione iniziale della racchetta del giocatore.

 player0x = 135

 player0y = 45

 rem Imposta la posizione iniziale della racchetta del computer.

 player1x = 20

 player1y = 45

 rem Imposta la posizione iniziale della palla al centro.

 ballx = 80

 bally = 45

 rem Imposta la velocità iniziale della palla.

 ballxvelocity = 1

 ballyvelocity = 1

 rem Inizializza il contatore delle vite.

 l=3

 rem Imposta i colori delle racchette. Questi registri sono volatili.

 COLUP0 = 140

 COLUP1 = 28

 rem Controlla se è la prima partita in assoluto.

 if q=1 then goto gameLoop

 rem Se è la prima partita, imposta il flag e vai alla schermata ‘premi fuoco’.

 q=1

firstgame

 rem Imposta i colori e attende l’input del giocatore.

 COLUP0 = 140

 COLUP1 = 28

 drawscreen

 if joy0fire then goto gameLoop

 goto firstgame

Pagina 116 di 236

 rem --- Ciclo di Gioco Principale ---

gameLoop

 rem Reimposta i registri TIA volatili ad ogni frame.

 COLUP0 = 140

 COLUP1 = 28

 rem Disegna il fotogramma corrente.

 drawscreen

 rem --- Gestione Input Giocatore (4 Direzioni) ---

 if joy0up then player0y = player0y-1

 if joy0down then player0y = player0y+1

 if joy0left then player0x = player0x-1

 if joy0right then player0x = player0x+1

 rem Clamping Orizzontale: impedisce alla racchetta di uscire lateralmente.

 if player0x < 20 then player0x = 20

 if player0x > 140 then player0x = 140

 rem Clamping Verticale: impedisce di uscire dall’alto e dal basso.

 if player0y < 16 then player0y = 16

 if player0y > 79 then player0y = 79

 rem --- IA del Computer ---

 rem L’IA è la stessa: la racchetta del computer segue la palla verticalmente.

 player1y = bally

 rem Clamping per la racchetta del computer.

 if player1y < 16 then player1y = 16

 if player1y > 79 then player1y = 79

 rem --- Fisica della Palla ---

 rem Aggiorna la posizione della palla.

 ballx = ballx + ballxvelocity

 bally = bally + ballyvelocity

 rem Fa rimbalzare la palla sui bordi superiore e inferiore del campo.

 if bally < 9 then ballyvelocity = 0 - ballyvelocity

 if bally > 77 then ballyvelocity = 0 - ballyvelocity

 rem --- Gestione Collisioni ---

 rem Se la palla colpisce la racchetta del giocatore…

 if collision(player0, ball) then gosub playercollision

 rem Se la palla colpisce la racchetta del computer…

 if collision(player1, ball) then gosub computercollision

 rem Se la palla colpisce gli ostacoli del playfield…

 if collision(ball,playfield) then gosub ballplayfieldcollision

Pagina 117 di 236

 rem --- Gestione Punti e Vite ---

 if ballx > 154 then gosub playerlostlife

 if ballx < 5 then gosub playerscores

 rem --- Condizione di Fine Partita ---

 if l < 1 then goto gameover

 rem Ripete il ciclo di gioco.

 goto gameLoop

 rem --- Sezione delle Subroutine ---

playercollision

 rem Gestisce la collisione palla-giocatore.

 rem Inverte la velocità orizzontale.

 ballxvelocity = 0 - ballxvelocity

 rem Sposta la palla per evitare collisioni multiple.

 ballx = ballx + ballxvelocity*3

 bally = bally + ballyvelocity*3

 return

computercollision

 rem Gestisce la collisione palla-computer.

 rem Inverte la velocità orizzontale.

 ballxvelocity = 0 - ballxvelocity

 rem Sposta la palla per evitare collisioni multiple.

 ballx = ballx + ballxvelocity*3

 bally = bally + ballyvelocity*3

 return

playerscores

 rem Gestisce il punto segnato dal giocatore.

 rem Resetta palla e velocità.

 ballx = 80

 bally = 45

 ballxvelocity = 1

 ballyvelocity = 1

 rem Aumenta il punteggio.

 score = score + 10

 return

playerlostlife

 rem Gestisce la vita persa dal giocatore.

 rem Decrementa le vite.

Pagina 118 di 236

 l = l - 1

 rem Resetta la palla.

 ballx = 80

 bally = 45

 return

ballplayfieldcollision

 rem Gestisce la collisione della palla con gli ostacoli.

 rem Inverte entrambe le componenti della velocità per un rimbalzo diagonale.

 ballxvelocity = 0 - ballxvelocity

 ballyvelocity = 0 - ballyvelocity

 rem Sposta la palla per evitare che rimanga “incastrata” nell’ostacolo.

 ballx = ballx + ballxvelocity*3

 bally = bally + ballyvelocity*3

 return

 rem --- Stato Finale: Game Over ---

gameover

 rem Mostra la schermata finale e attende l’input per ricominciare.

 COLUP0 = 140

 COLUP1 = 28

 bally = 110

 drawscreen

 if joy0fire then goto startNewGame

 goto gameover

Pagina 119 di 236

Dynamic Pong

 rem **

 rem * Dynamic Pong (Racchetta che si Accorcia) *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Questa variante di Pong introduce una meccanica di difficoltà *

 rem * crescente. Il giocatore controlla la racchetta destra (player0)*

 rem * e affronta una racchetta controllata dal computer (player1). *

 rem * La caratteristica distintiva di questa versione è che la *

 rem * racchetta del giocatore si accorcia ogni volta che perde una *

 rem * vita, rendendo il gioco progressivamente più difficile. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - Grafica Dinamica dello Sprite: La dimensione (altezza) dello *

 rem * sprite del giocatore (player0) non è fissa. Il programma *

 rem * utilizza una logica `if` nel `main_loop` per controllare il *

 rem * numero di vite rimanenti (`l`). In base a questo valore, *

 rem * viene chiamata una diversa subroutine (`pll3`, `pll2`, `pll1`)*

 rem * che ridefinisce la grafica di `player0:` con altezze diverse.*

 rem * - Organizzazione del Codice con Subroutine: Le diverse *

 rem * definizioni grafiche dello sprite sono incapsulate in *

 rem * subroutine separate. Questo mantiene il `main_loop` pulito e *

 rem * rende chiara la logica di selezione dello sprite. *

 rem * - Indicatore di Stato Visivo: La dimensione della racchetta *

 rem * funge da indicatore visivo immediato per il giocatore del *

 rem * numero di vite rimaste, integrando l'HUD (Heads-Up Display) *

 rem * direttamente nell'elemento di gioco principale. *

 rem * - Le altre tecniche (fisica della palla, IA, collisioni, etc.) *

 rem * sono identiche alla versione base del Pong. *

 rem **

 rem --- Direttive del Compilatore ---

 set romsize 4k

 rem --- Sezione Definizioni Variabili (Alias) ---

 rem Crea un alias per la velocità orizzontale della palla.

 dim ballxvelocity = a

 rem Crea un alias per la velocità verticale della palla.

 dim ballyvelocity = b

 rem 'q' è un flag per gestire il primo avvio del gioco.

 q=0

Pagina 120 di 236

 rem --- Impostazioni Iniziali Grafica ---

 rem Imposta il colore dello sfondo (verde).

 COLUBK = 198

 rem Imposta il colore del playfield (bianco per i bordi).

 COLUPF = 14

 rem Definisce la grafica del campo da gioco (bordi superiore e inferiore).

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 rem Definisce la grafica della racchetta del computer (player1).

 player1:

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

end

 rem --- Stato 1: Inizializzazione Partita / Round ---

startNewGame

 rem Questa etichetta viene chiamata per iniziare una nuova partita o un nuovo round.

 rem Imposta la posizione iniziale della racchetta del giocatore.

 player0x = 140

 player0y = 48

 rem Imposta la posizione iniziale della racchetta del computer.

 player1x = 15

 player1y = 45

 rem Imposta la posizione iniziale della palla al centro.

 ballx = 80

 bally = 41

Pagina 121 di 236

 rem Imposta la velocità iniziale della palla.

 ballxvelocity = 1

 ballyvelocity = 1

 rem Inizializza il contatore delle vite.

 l=3

 rem Imposta i colori delle racchette. Questi registri sono volatili.

 COLUP0 = 140

 COLUP1 = 28

 rem Imposta la grafica iniziale della racchetta del giocatore (grandezza massima).

 gosub pll3

 rem Controlla se è la prima partita in assoluto.

 if q=1 then goto gameLoop

 rem Se è la prima partita, imposta il flag e vai alla schermata 'premi fuoco'.

 q=1

firstgame

 COLUP0 = 140

 COLUP1 = 28

 drawscreen

 if joy0fire then goto gameLoop

 goto firstgame

 rem --- Ciclo di Gioco Principale ---

gameLoop

 rem Reimposta i registri TIA volatili ad ogni frame.

 COLUP0 = 140

 COLUP1 = 28

 rem Grafica Dinamica: seleziona la dimensione della racchetta in base alle vite.

 if l=3 then gosub pll3

 if l=2 then gosub pll2

 if l=1 then gosub pll1

 rem Disegna il fotogramma corrente.

 drawscreen

 rem --- Gestione Input Giocatore ---

 if joy0up then player0y = player0y-1

 if joy0down then player0y = player0y+1

 rem Clamping: impedisce alla racchetta del giocatore di uscire dallo schermo.

 if player0y < 16 then player0y = 16

 if player0y > 79 then player0y = 79

Pagina 122 di 236

 rem --- IA del Computer ---

 rem La racchetta del computer segue la posizione Y della palla.

 player1y = bally

 rem Clamping per la racchetta del computer.

 if player1y < 16 then player1y = 16

 if player1y > 79 then player1y = 79

 rem --- Fisica della Palla ---

 rem Aggiorna la posizione della palla.

 ballx = ballx + ballxvelocity

 bally = bally + ballyvelocity

 rem Fa rimbalzare la palla sui bordi.

 if bally < 9 then ballyvelocity = 0 - ballyvelocity

 if bally > 77 then ballyvelocity = 0 - ballyvelocity

 rem --- Gestione Collisioni ---

 if collision(player0, ball) then gosub playercollision

 if collision(player1, ball) then gosub computercollision

 rem --- Gestione Punti e Vite ---

 if ballx > 150 then gosub playerlostlife

 if ballx < 5 then gosub playerscores

 rem --- Condizione di Fine Partita ---

 if l < 1 then goto gameover

 rem Ripete il ciclo di gioco.

 goto gameLoop

 rem --- Sezione delle Subroutine di Gioco ---

playercollision

 rem Gestisce la collisione palla-giocatore.

 ballxvelocity = 0 - ballxvelocity

 ballx = ballx + ballxvelocity*5

 bally = bally + ballyvelocity*5

 return

computercollision

 rem Gestisce la collisione palla-computer.

 ballxvelocity = 0 - ballxvelocity

 ballx = ballx + ballxvelocity*5

 bally = bally + ballyvelocity*5

 return

playerscores

Pagina 123 di 236

 rem Gestisce il punto segnato dal giocatore.

 rem Resetta la palla e la sua velocità.

 ballx = 80

 bally = 45

 ballxvelocity = 1

 ballyvelocity = 1

 rem Incrementa lo score.

 score = score + 10

 return

playerlostlife

 rem Gestisce la vita persa.

 rem Decrementa il contatore delle vite.

 l = l - 1

 rem Resetta la palla.

 ballx = 80

 bally = 45

 return

 rem --- Stato Finale: Game Over ---

gameover

 rem Mostra l'ultimo stato e attende l'input per ricominciare.

 COLUP0 = 140

 COLUP1 = 28

 bally = 110

 drawscreen

 if joy0fire then goto startNewGame

 goto gameover

 rem --- Subroutine Grafiche: Dimensioni Racchetta Giocatore ---

pll3

 rem Racchetta a grandezza massima (16 pixel di altezza) quando le vite sono 3.

 player0:

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

Pagina 124 di 236

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

end

 return

pll2

 rem Racchetta a grandezza media (8 pixel di altezza) quando le vite sono 2.

 player0:

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

 %00011000

end

 return

pll1

 rem Racchetta a grandezza minima (4 pixel di altezza) quando la vita è 1.

 player0:

 %00011000

 %00011000

 %00011000

 %00011000

end

 return

Pagina 125 di 236

Killer Acorn

 rem **

 rem * Killer Acorn (Ghianda Assassina) *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Il giocatore controlla una ghianda (player0) in un'arena *

 rem * chiusa. Un nemico (player1) insegue costantemente il *

 rem * giocatore. Il giocatore può sparare un proiettile (missile0) *

 rem * per colpire il nemico, guadagnando punti e facendolo *

 rem * riapparire in una posizione casuale. Se il nemico tocca il *

 rem * giocatore, si perde una vita e punti. Il gioco termina *

 rem * quando le vite si esauriscono. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - Intelligenza Artificiale (IA) Semplice: Il nemico (player1) *

 rem * implementa una logica di inseguimento ("chasing logic") *

 rem * basata su semplici confronti tra le sue coordinate e quelle *

 rem * del giocatore, muovendosi di un pixel alla volta verso di *

 rem * lui. *

 rem * - Animazione a Frame Multipli: L'animazione del nemico è *

 rem * realizzata alternando quattro definizioni grafiche *

 rem * diverse (`player1:`). Un contatore (`v`) rallenta *

 rem * l'animazione per renderla visibile, mentre un secondo *

 rem * contatore (`w`) tiene traccia del frame corrente da *

 rem * visualizzare. *

 rem * - Gestione Proiettile Singolo: Il gioco permette di avere un *

 rem * solo proiettile attivo alla volta. La sua posizione verticale*

 rem * (`missile0y`) viene usata come flag: un valore alto (>240) *

 rem * indica che il proiettile è "inattivo" e se ne può sparare *

 rem * un altro. *

 rem * - Gestione Vite e Punteggio: Il gioco utilizza variabili *

 rem * standard per le vite (`a`) e lo score (`score`). *

 rem * - Uso di `rand`: Il comando `rand` viene usato per far *

 rem * riapparire il nemico in una posizione orizzontale casuale *

 rem * dopo essere stato colpito. *

 rem **

 set romsize 4k

 rem --- Stato 1: Schermata Titolo ---

opening

 rem Definisce la grafica statica del titolo.

Pagina 126 di 236

 playfield:

X..X.XXX..X...X...XXX.XX....

X.X...X...X...X...X...X.X...

XX....X...X...X...XX..XX....

X.X...X...X...X...X...X.X...

X..X.XXX..XXX.XXX.XXX.X..X..

XXX.XXX.XXX.XXX.X.X......

X.X.X...X.X.X.X.X.X......

XXX.X...X.X.XX..XXX......

X.X.XXX.XXX.X.X.X.X......

end

title

 rem Imposta i colori per il titolo.

 COLUBK = $60

 COLUPF = 212

 rem Disegna lo schermo e attende l'input del giocatore per iniziare.

 drawscreen

 if joy0fire || joy1fire then goto skiptitle

 goto title

skiptitle

 rem --- Inizializzazione Partita ---

 rem Imposta i colori di gioco: sfondo blu, playfield (muri) neri.

 COLUPF = 0

 COLUBK = 212

 rem Imposta la posizione iniziale del giocatore e del nemico.

 player0x = 50

 player0y = 70

 player1x = 20

 player1y = 8

 rem Imposta un valore iniziale per lo score e il suo colore.

 score = 103

 scorecolor = 1

 rem Imposta le proprietà del missile: altezza e posizione iniziale fuori schermo.

 missile0height=1

 missile0y=255

 rem Imposta la dimensione dello sprite del giocatore a larghezza doppia.

 NUSIZ0 = 2

 rem Inizializza il contatore delle vite.

 a = 3

 rem Definisce la grafica del playfield di gioco (l'arena).

Pagina 127 di 236

 playfield:

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 X..............................X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 rem --- Ciclo di Gioco Principale ---

main

 rem Incrementa il contatore 'v' per rallentare l'animazione del nemico.

 v = v + 1

 rem Logica di animazione: se 'v' raggiunge la soglia (7), cambia il frame

 rem dello sprite del nemico in base al valore di 'w'.

 if v = 7 && w = 0 then goto ax

 if v = 7 && w = 1 then goto bx

 if v = 7 && w = 2 then goto cx

 if v = 7 && w = 3 then goto dx

 goto nextstep

 rem --- Subroutine di Animazione Nemico ---

 rem Queste quattro sezioni (ax, bx, cx, dx) definiscono i 4 frame di

 rem animazione per player1. Ognuna reimposta il contatore 'v' e

 rem aggiorna il contatore di frame 'w'.

ax

 v = 0

 w = 1

 player1:

 %00001000

 %01101000

 %00101000

 %01010000

 %01011110

 %01110000

 %00011000

 %00011000

Pagina 128 di 236

end

 goto nextstep

bx

 v = 0

 w = 2

 player1:

 %00100000

 %01110000

 %00101000

 %01010000

 %01011110

 %01110000

 %00011000

 %00011000

end

 goto nextstep

cx

 v = 0

 w = 3

 player1:

 %00011000

 %00011000

 %00101000

 %01010000

 %01011110

 %01110000

 %00011000

 %00011000

end

 goto nextstep

dx

 v = 0

 w = 0

 player1:

 %00100000

 %01110000

 %00101000

 %01010000

 %01011110

 %01110000

 %00011000

 %00011000

end

Pagina 129 di 236

 goto nextstep

nextstep

 rem Definizione grafica dello sprite del giocatore (la ghianda).

 player0:

 %00111100

 %01011010

 %00100100

 %00111100

 %00011000

 %00011000

 %00010000

 %00010000

end

 rem --- Logica del Proiettile ---

checkfire

 rem Controlla se un missile è già attivo (missile0y <= 240).

 if missile0y>240 then goto skip

 rem Se è attivo, lo muove verso l'alto.

 missile0y = missile0y - 2

 goto draw

skip

 rem Se non ci sono missili attivi, controlla se il giocatore preme 'fuoco'.

 rem Se sì, crea un nuovo missile alla posizione del giocatore.

 if joy0fire then missile0y=player0y-2:missile0x=player0x+4

draw

 rem Disegna il fotogramma corrente.

 drawscreen

 rem --- Logica di Movimento e Limiti ---

 rem Clamping: impedisce al giocatore di uscire dai bordi dello schermo.

 if player0x < 18 then player0x = 18

 if player0x > 136 then player0x = 136

 if player0y < 8 then player0y = 8

 if player0y > 80 then player0y = 80

 rem IA Semplice: il nemico (player1) insegue il giocatore (player0).

 if player1y < player0y then player1y = player1y + 1

 if player1y > player0y then player1y = player1y - 1

 if player1x < player0x then player1x = player1x + 1

Pagina 130 di 236

 if player1x > player0x then player1x = player1x - 1

 rem --- Gestione Collisioni ---

 rem Rileva la collisione tra il missile e il nemico.

 if collision(missile0,player1) then goto point

 rem Rileva la collisione tra il nemico e il giocatore.

 if collision(player0,player1) then goto dead

 rem --- Gestione Input Giocatore ---

 if joy0up then player0y = player0y-1

 if joy0down then player0y = player0y+1

 if joy0left then player0x = player0x-1

 if joy0right then player0x = player0x +1

 rem Ripete il ciclo di gioco.

 goto main

 rem --- Subroutine di Evento: Nemico Colpito ---

point

 rem Incrementa lo score.

 score=score+100

 rem Fa riapparire il nemico in una nuova posizione casuale in cima allo schermo.

 player1x=rand/2

 player1y=0

 rem Disattiva il missile.

 missile0y=255

 rem Torna al ciclo principale.

 goto main

 rem --- Subroutine di Evento: Giocatore Colpito ---

dead

 rem Decrementa lo score.

 score=score-1

 rem Fa riapparire il nemico in una nuova posizione casuale.

 player1x=rand/2

 player1y=0

 rem Disattiva il missile.

 missile0y=255

 rem Decrementa il contatore delle vite.

 a=a-1

 rem Se le vite sono esaurite, passa alla schermata di Game Over.

 if a = 0 then goto resetfire

 rem Altrimenti, torna al ciclo principale.

Pagina 131 di 236

 goto main

 rem --- Stato Finale: Game Over / Riavvio ---

resetfire

 rem Nasconde il giocatore.

 player0y=200

 rem Usa un flag temporaneo 'f' per rilevare una singola pressione del fuoco.

 f = 0

 if joy0fire || joy1fire then f = 1

 rem Se il giocatore non preme fuoco, rimane in un loop che mostra la schermata titolo.

 if f = 0 then goto opening

 rem Se preme fuoco, esce dal loop e riavvia.

 drawscreen

 goto resetfire

Pagina 132 di 236

Simple Soccer

 rem **

 rem * Simple Soccer (2 Giocatori) *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Un gioco di calcio/hockey a due giocatori. Ogni giocatore *

 rem * controlla il proprio personaggio (player0 e player1) in *

 rem * quattro direzioni. I giocatori possono "dribblare" la palla *

 rem * (ball) tenendola vicina a sé e tirare premendo il pulsante *

 rem * di fuoco. L'obiettivo è segnare nella porta avversaria. Le *

 rem * porte sono le aree aperte ai lati del campo. Il gioco *

 rem * gestisce il possesso palla e il tiro. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - Kernel Option `player1colors`: Questa opzione avanzata del *

 rem * kernel viene usata per dare a `player1` un aspetto *

 rem * multicolore, permettendo di definire un colore diverso per *

 rem * ogni linea dello sprite. Questo sacrifica l'uso del *

 rem * missile1, ma arricchisce notevolmente la grafica. *

 rem * - Gestione del Possesso Palla: Una variabile (`p`) funge da *

 rem * flag per determinare quale giocatore ha il possesso della *

 rem * palla. Quando la palla non è in fase di tiro, la sua *

 rem * posizione viene costantemente aggiornata per "attaccarsi" *

 rem * al giocatore in possesso. *

 rem * - Gestione del Tiro: Una variabile (`z`) funge da flag di *

 rem * stato per il tiro. Se `z` è 0, la palla è in possesso. Se è 1,*

 rem * la palla è stata tirata da player0 e si muove da sola. Se è 2,*

 rem * la palla è stata tirata da player1. *

 rem * - Logica di Salvataggio Posizione: Per gestire le collisioni *

 rem * con i muri, il programma salva le coordinate "valide" dei *

 rem * giocatori all'inizio di ogni frame (`e, f, g, h`). Se viene *

 rem * rilevata una collisione, le coordinate vengono ripristinate *

 rem * a quelle precedenti, impedendo al giocatore di passare *

 rem * attraverso i muri. *

 rem * - Gioco a Due Giocatori: Il codice legge l'input da entrambi i *

 rem * joystick (`joy0` e `joy1`), permettendo a due persone di *

 rem * giocare contemporaneamente. *

 rem **

 rem --- Direttive del Compilatore ---

 rem Abilita l'opzione del kernel per avere uno sprite player1 multicolore.

 set romsize 4k

Pagina 133 di 236

 set kernel_options player1colors

 rem --- Definizioni Grafiche Iniziali ---

 rem Definisce il campo da gioco con le due porte laterali.

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X....X...................X....X

 X.............................X

 X.............................X

 X.............................X

 X.............................X

 X.............................X

 X.............................X

 X.............................X

 X....X...................X....X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 rem Definisce la grafica per il giocatore 1 (player0).

 player0:

 %00100010

 %00010100

 %00001000

 %00111110

 %00001000

 %00011100

 %00011100

 %00011100

end

 rem Definisce la grafica per il giocatore 2 (player1).

 player1:

 %01000100

 %00101000

 %00010000

 %01111100

 %00010000

 %00111000

 %00111000

 %00111000

end

 rem --- Impostazioni di Gioco Iniziali ---

 rem Imposta il colore di sfondo iniziale.

 COLUBK = $0F

Pagina 134 di 236

 rem Imposta la larghezza del missile0 (non usato per sparare ma il registro esiste).

 NUSIZ0 = $30

 rem Azzera lo score e imposta il colore del testo.

 score = 00000

 scorecolor = $08

 rem --- Inizializzazione Variabili ---

 rem Le variabili non hanno alias 'dim', ma rappresentano:

 rem a, b: coordinate x, y del giocatore 0.

 a = 75

 b = 75

 rem c, d: coordinate x, y del giocatore 1.

 c = 75

 d = 25

 rem z: stato della palla (0=in possesso, 1=tiro p0, 2=tiro p1).

 z = 0

 rem p: possesso palla (0=p0, 1=p1).

 p = 0

 rem Imposta le posizioni iniziali degli oggetti di gioco.

 player0x = a : player0y = b

 player1x = c : player1y = d

 ballx = x : bally = y

 rem --- Ciclo di Gioco Principale ---

main

 rem Imposta i registri TIA volatili ad ogni frame.

 COLUP1 = $80

 COLUP0 = $40

 COLUBK = $C4

 COLUPF = $0E

 rem Salva le coordinate correnti dei giocatori prima di ogni movimento.

 e = a

 f = b

 g = c

 h = d

 rem Tabella colori per lo sprite multicolore player1.

 player1color:

 $38;

 $3A;

 $F4;

 $F6;

Pagina 135 di 236

 $0C;

 $1A;

 $D8;

 $D2;

end

 rem Disegna il fotogramma corrente.

 drawscreen

 rem --- Gestione Input Giocatori ---

 rem Legge l'input dal joystick 0 per muovere il giocatore 0.

 if joy0left then a = a - 1

 if joy0up then b = b - 1

 if joy0down then b = b + 1

 if joy0right then a = a + 1

 rem Legge l'input dal joystick 1 per muovere il giocatore 1.

 if joy1left then c = c - 1

 if joy1up then d = d -1

 if joy1down then d = d + 1

 if joy1right then c = c + 1

 rem --- Logica della Palla (Possesso e Tiro) ---

 rem Se il giocatore in possesso preme 'fuoco', imposta lo stato 'tiro'.

 if p = 0 && joy0fire then z = 1

 if p = 1 && joy1fire then z = 2

 rem Se la palla è in possesso (z=0), la "attacca" al giocatore corretto.

 if z = 0 && p = 0 then ballx = a + 5 : bally = b - 10

 if z = 0 && p = 1 then ballx = c + 4 : bally = d + 2

 rem Se la palla è in stato 'tiro', la muove in verticale.

 if z = 1 then bally = bally - 1

 if z = 2 then bally = bally + 1

 rem Aggiorna le coordinate finali degli sprite.

 player0x = a : player0y = b

 player1x = c : player1y = d

 rem --- Gestione Reset e Collisioni ---

 rem Controlla se il pulsante di reset è stato premuto.

 if switchreset then goto hardReset

 rem Se la palla tocca un giocatore, quel giocatore ne ottiene il possesso.

 if collision(ball, player0) then goto save0

 if collision(ball, player1) then goto save1

 rem Se un giocatore tocca i muri...

Pagina 136 di 236

 if collision(player0, playfield) then goto player0HitWall

 if collision(player1, playfield) then goto player1HitWall

 rem Impedisce ai giocatori di entrare nelle porte avversarie.

 if player0y < 30 then goto player0HitWall

 if player1y > 66 then goto player1HitWall

 rem Se la palla tocca il playfield (muri o porte)...

 if collision(ball, playfield) then goto shoot

 rem Ripete il ciclo di gioco.

 goto main

 rem --- Subroutine di Gestione Collisioni Muri ---

player0HitWall

 rem Ripristina la posizione del giocatore 0 a quella valida precedente.

 a = e

 b = f

 goto main

player1HitWall

 rem Ripristina la posizione del giocatore 1 a quella valida precedente.

 c = g

 d = h

 goto main

 rem --- Subroutine di Gestione Possesso Palla ---

save0

 rem Il giocatore 0 ora ha il possesso.

 p = 0

 rem La palla smette di essere in 'tiro'.

 z = 0

 goto main

save1

 rem Il giocatore 1 ora ha il possesso.

 p = 1

 rem La palla smette di essere in 'tiro'.

 z = 0

 goto main

 rem --- Subroutine di Gestione Tiro in Porta ---

shoot

 rem Controlla se la palla ha colpito un muro laterale o una delle porte.

 rem Le porte si trovano tra x=41 e x=119.

 if ballx > 41 && ballx < 119 then goto hit

 rem Se ha colpito un muro laterale, resetta le posizioni.

Pagina 137 di 236

 goto reset

hit

 rem Controlla in quale metà del campo si trova la palla per determinare chi ha segnato.

 if bally < 50 then goto player0Score

 if bally > 50 then goto player1Score

 goto reset

player0Score

 rem Il giocatore 0 ha segnato.

 score = score + 1

 rem La palla passa al giocatore 1.

 p = 1

 goto reset

player1Score

 rem Il giocatore 1 ha segnato.

 score = score + 1000

 rem La palla passa al giocatore 0.

 p = 0

 goto reset

 rem --- Subroutine di Reset Posizioni ---

reset

 rem Riporta i giocatori alle posizioni iniziali.

 a = 75

 b = 75

 c = 75

 d = 25

 rem Resetta lo stato della palla a 'in possesso'.

 z = 0

 goto main

 rem --- Subroutine di Hard Reset ---

hardReset

 rem Azzera completamente lo score.

 score = 000000

 rem Restituisce il possesso iniziale al giocatore 0.

 p = 0

 rem Chiama la subroutine di reset delle posizioni.

 goto reset

Pagina 138 di 236

The Watch

 rem **

 rem * The Watch (Il Guardiano del Castello) *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Il giocatore controlla un cavaliere (il Ranger, player0) che *

 rem * deve difendere un muro da un mostro (il Wright, player1). Il *

 rem * mostro insegue il giocatore e tenta di distruggerlo. Il *

 rem * giocatore può attaccare con la sua spada (missile0) per *

 rem * respingere e infine sconfiggere il mostro. Il giocatore deve *

 rem * anche raccogliere mattoni (ball) e portarli sul muro per *

 rem * ricostruirlo. Il gioco diventa progressivamente più difficile, *

 rem * con il mostro che diventa più veloce e resistente. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - Kernel Options Avanzate: `pfcolors` e `pfheights` vengono *

 rem * usate per creare un playfield multicolore e con blocchi di *

 rem * altezze diverse, permettendo una grafica di sfondo più ricca.*

 rem * - IA con Difficoltà Crescente: La velocità del nemico è *

 rem * controllata da un timer (`d`). Ad ogni livello completato, *

 rem * il valore di `d` diminuisce, rendendo il nemico più veloce. *

 rem * Anche la sua resistenza (`a`, colpi per ucciderlo) aumenta. *

 rem * - Interazione Dinamica con il Playfield: Il giocatore può *

 rem * modificare il playfield in tempo reale. Raccoglie un mattone *

 rem * (ball) e, quando tocca il muro, usa `pfpixel ... on` per *

 rem * "disegnare" un nuovo blocco, ricostruendo la fortificazione. *

 rem * Il comando `pfread` viene usato per verificare se un blocco *

 rem * è già stato posato. *

 rem * - Animazione a Frame Multipli: Il giocatore ha un'animazione *

 rem * di camminata (frame1, frame2) e una di attacco (dosword). *

 rem * - Gestione del Punteggio BCD: Viene usato l'approccio *

 rem * consigliato con alias ai singoli byte dello score (`_sc1`, *

 rem * `_sc2`, `_sc3`) per controllare in modo sicuro condizioni *

 rem * come il Game Over (score < 0). *

 rem * - Effetti Sonori Temporizzati: Gli effetti sonori per colpi e *

 rem * vittorie sono gestiti tramite loop che si ripetono per un *

 rem * numero fisso di frame, creando suoni di breve durata. *

 rem **

 rem --- Sezione Definizioni Variabili (Commenti originali mantenuti) ---

 rem a: numero di colpi per uccidere i wright

 rem b: posizione orizzontale del ranger (p0_x)

Pagina 139 di 236

 rem c: posizione verticale del ranger (p0_y)

 rem d: velocita' con cui il wright insegue il disertore (in funzione di t)

 rem e: suono dell'uccisione di Wright

 rem f: timer per l'animazione del player0 che cammina

 rem g: suono wright colpito

 rem h: distanza del wright dopo essere stato pugnalato (colpo)

 rem i: possesso mattone (ball)

 rem j-u: flag per le sezioni del muro ricostruite

 rem t: timer per velocita' wright inseguimento del ranger (vedi d)

 rem v: movimento player1 (wright) orizzontalmente

 rem w: movimento player1 (wright) in verticale

 rem y: suono del castello costruito

 rem --- Direttive del Compilatore ---

 set romsize 4k

 set kernel_options pfcolors pfheights

 rem --- Stato 0: Inizializzazione Globale e Schermata Titolo ---

init

 rem Imposta i colori iniziali.

 COLUP1 = $A6

 COLUBK = $0E

 rem Definizione grafica iniziale del nemico (Wright).

 player1:

 %11110111

 %01110111

 %00011011

 %00011011

 %00011011

 %00110011

 %00110110

 %00110110

 %10111100

 %10111101

 %10111101

 %10111101

 %10111101

 %10111101

 %10111101

 %11111110

 %11111000

 %01111000

Pagina 140 di 236

 %00100100

 %00101100

 %01000010

 %01101010

 %01000010

 %00111100

end

 rem Posiziona il nemico fuori dallo schermo.

 player1x = 0 : player1y = 200

 rem Definisce le altezze per ogni linea del playfield.

 pfheights:

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

end

 rem Definisce i colori per ogni linea del playfield.

 pfcolors:

 $00

 $AA

 $AA

 $AA

 $AC

 $AC

 $AC

 $AE

 $AE

 $AE

 $AE

end

 rem Posiziona palla e giocatore fuori schermo.

 ballx = 0

 bally = 200

 player0x = 0 : player0y = 200

Pagina 141 di 236

 rem --- Alias per le variabili di gioco principali ---

 dim p0_x = b

 dim p0_y = c

 v=152

 w=40

 rem Alias per i byte dello score (gestione BCD).

 dim _sc1 = score

 dim _sc2 = score+1

 dim _sc3 = score+2

 rem Inizializzazione parametri di difficoltà.

 a = 4

 d = 30

 h = 20

 rem Grafica della schermata titolo.

 playfield:

 .XXXX.......................X.X

 XX........XXX.X.X.XXX.....XXXXX

 .XX........X..X.X.X..........XX

 ..XX.......X..XXX.XXX.......X..

 ..X.X......X..X.X.X........X.X.

 ..XX.......X..X.X.XXX.......X.X

 .X...........................XX

 XX....X...X.XXX.XXX.XXX.X.X...X

 .XX...X.X.X.X.X..X..X...XXX...X

 X.XX...X.X..XXX..X..X...X.X..XX

 XXXX...X.X..X.X..X..XXX.X.X...X

end

 rem Silenzia i canali audio.

 AUDV1 = 0

 AUDC1 = 0

 AUDF1 = 0

firstscreen

 rem Loop della schermata titolo: attende la pressione di 'fuoco'.

 drawscreen

 if joy0fire then goto preloop

 goto firstscreen

 rem --- Stato 1: Preparazione del Livello ---

preloop

 rem Posiziona il giocatore, il nemico e il mattone per l'inizio del round.

Pagina 142 di 236

 player0x = 56 : player0y = 96

 player1x = 80 : player1y = 60

 ballx = 81

 bally = 78

 rem Definisce la grafica del muro da ricostruire.

 playfield:

 X.X.X...........................

 .XXXX...........................

 X.XXX...........................

 XXX.X...........................

 XX.XX...........................

 X.XXX...........................

 X.XXX...........................

 XXX.X...........................

 .XXXX...........................

 X.XXX...........................

 XXXXX...........................

end

 rem Resetta la posizione del nemico e i flag di costruzione del muro.

 v= 152 : w = 40

 j = 0 : k = 0 : l = 0 : o = 0 : p = 0 : q = 0 : r = 0 : s = 0 : u = 0

 drawscreen

 rem --- Ciclo di Gioco Principale ---

loop

 rem Controlla la pressione del tasto Reset della console.

 if switchreset then goto init

 rem Se tutte le sezioni del muro sono costruite, passa allo stato di 'livello completato'.

 if j = 1 && k = 1 && l = 1 && o = 1 && p = 1 && q = 1 && r = 1 && s = 1 && u = 1 then goto castl

ecompleted

 rem Impostazioni dei registri TIA per il gioco.

 ballheight = 3

 CTRLPF = $21

 player1x=v

 player1y=w

 rem --- Logica di Animazione e Timer ---

 rem Incrementa i timer per l'animazione e la velocità del nemico.

 f=f+1

 t=t+1

 if t>30 then t=0

Pagina 143 di 236

 rem Controlla la condizione di Game Over (score andato in negativo).

 if _sc1 = $99 && _sc2 = $99 && _sc3 <= $99 then score = score +1 : goto firstscreen

 rem --- Gestione Movimento e Animazione Giocatore ---

 rem Azzera il contatore di animazione.

 if f = 20 then f = 0

 rem Seleziona il frame di animazione in base al timer 'f'.

 if f < 10 then gosub frame1

 if f > 10 && f < 20 then gosub frame2

 if f > 10 && f < 20 && !joy0left && !joy0right && !joy0up && !joy0down then gosub frame1

 rem Gestione input per movimento. Usa l'aritmetica a complemento a due per il movimento.

 p0_x = 0

 if joy0left && !joy0fire then REFP0 = 8 : p0_x = 255 : player0x = player0x + p0_x : if i = 1 the

n ballx = player0x - 3 : bally = player0y - 11

 if joy0right && !joy0fire then REFP0 = 0 : p0_x = 1 : player0x = player0x + p0_x : if i = 1 then

 ballx = player0x - 3 : bally = player0y - 11

 p0_y = 0

 if joy0up then p0_y = 255 : player0y = player0y + p0_y : if i = 1 then ballx = player0x - 3 : ba

lly = player0y - 11

 if joy0down then p0_y = 1 : player0y = player0y + p0_y : if i = 1 then ballx = player0x - 3 : ba

lly = player0y - 11

 rem --- Gestione Attacco Giocatore ---

 rem Imposta la dimensione orizzontale della spada.

 NUSIZ0 = $30

 rem Se preme fuoco, mostra la spada e perde il possesso del mattone.

 if joy0fire then missile0x = player0x + 9 : missile0y = player0y - 7 : i = 0 : gosub dosword els

e missile0x = 0 : missile0y = 0

 rem Clamping: impedisce a giocatori e oggetti di uscire dallo schermo.

 if player0x < 38 then player0x = 38

 if player0x > 124 then player0x = 124

 if player0y < 17 then player0y = 17

 if player0y > 89 then player0y = 89

 if ballx < 37 then ballx = 37

 if bally < 11 then bally = 11

 if bally > 78 then bally = 78

 if player1x > 152 then player1x = 152

 rem Imposta i colori di gioco.

 COLUBK = $0E

 COLUP1 = $A6

 rem Disegna il fotogramma.

Pagina 144 di 236

 drawscreen

 rem --- Gestione delle Collisioni ---

 rem Collisione spada-nemico: se il nemico ha ancora vita, lo respinge.

 if collision(missile0,player1) && a <> 0 then v = v + h : a = a - 1: goto strikewright

 rem Se il nemico non ha più vita, lo sconfigge.

 if collision(missile0,player1) && a = 0 then v = 152 : score = score + 1 : goto killwright

 rem Collisione giocatore-nemico: resetta posizione, perde punti.

 if collision(player0,player1) then player0x = 56 : player0y = 96 : i = 0 : score = score -1 : if

 d = 30 then v = v + 5

 rem Collisione giocatore-mattone: prende possesso del mattone.

 if collision(ball,player0) then ballx = player0x - 3 : bally = player0y - 11 : i = 1

 rem Collisione mattone-muro: posa il mattone.

 if collision(ball, playfield) then gosub putoncastle

 rem --- IA del Nemico ---

 rem Muove il nemico verso il giocatore solo se il timer 't' supera la soglia 'd'.

 if t<d then goto skipmovement

 if v < player0x then v=v+1

 if v > player0x then v=v-1 : AUDV1 = 4

 if w < player0y then w=w+1

 if w > player0y then w=w-1 : AUDV1 = 4

skipmovement

 rem Ripete il ciclo di gioco.

 goto loop

 rem --- Subroutine per Costruire il Castello ---

putoncastle

 rem Controlla la posizione del mattone e, se lo spazio è libero (!pfread), disegna un nuovo pixe

l.

 if bally > 11 && bally < 17 && !pfread(0,1) then pfpixel 0 1 on : i = 0 : ballx = 81 : bally = 3

9 : j = 1

 if bally >= 17 && bally < 25 && !pfread(1,2) then pfpixel 1 2 on : i = 0 : ballx = 81 : bally =

75 : k = 1

 if bally >= 25 && bally < 35 && !pfread(3,3) then pfpixel 3 3 on : i = 0 : ballx = 81 : bally =

11 : l = 1

 if bally >= 35 && bally < 41 && !pfread(2,4) then pfpixel 2 4 on : i = 0 : ballx = 81 : bally =

59 : o = 1

 if bally >= 41 && bally < 49 && !pfread(1,5) then pfpixel 1 5 on : i = 0 : ballx = 81 : bally =

19 : p = 1

 if bally >= 49 && bally < 56 && !pfread(1,6) then pfpixel 1 6 on : i = 0 : ballx = 81 : bally =

53 : q = 1

 if bally >= 56 && bally < 65 && !pfread(3,7) then pfpixel 3 7 on : i = 0 : ballx = 81 : bally =

27 : r = 1

 if bally >= 65 && bally < 73 && !pfread(0,8) then pfpixel 0 8 on : i = 0 : ballx = 81 : bally =

19 : s = 1

Pagina 145 di 236

 if bally >= 73 && bally < 78 && !pfread(1,9) then pfpixel 1 9 on : i = 0 : ballx = 81 : bally =

65 : u = 1

 return

 rem --- Subroutine Grafiche Giocatore ---

frame1

 rem Primo frame dell'animazione di camminata.

 player0:

 %11111100

 %11011000

 %11011000

 %11011000

 %11011000

 %11111000

 %10011010

 %11001010

 %11101111

 %11111010

 %01111010

 %10110010

 %11001010

 %01001010

 %01001010

 %00110000

end

 return

frame2

 rem Secondo frame dell'animazione di camminata.

 player0:

 %11101100

 %11001110

 %11001100

 %11011100

 %11011000

 %11111000

 %10011010

 %11001010

 %11101111

 %11111010

 %01111010

 %10110010

 %11001010

 %01001010

Pagina 146 di 236

 %01001010

 %00110000

end

 return

dosword

 rem Frame per l'animazione di attacco con la spada.

 player0:

 %11111100

 %11011000

 %11011000

 %11011000

 %11011000

 %11111001

 %10011001

 %11001111

 %11101001

 %11111001

 %01111000

 %10110000

 %11001000

 %01001000

 %01001000

 %00110000

end

 return

 rem --- Subroutine Audio ed Eventi ---

killwright

 rem Suono per la sconfitta del nemico.

 AUDV1 = 4

 AUDC1 = 7

 AUDF1 = e

 e = e + 1

 drawscreen

 if e < 10 then killwright

 e = 0

 AUDV1 = 0 : AUDC1 = 0 : AUDF1 = 0

 score = score + 1

 rem Aggiorna la resistenza del nemico per il prossimo livello.

 if d <= 30 then a = 4

 if d <= 20 then a = 2

 if d <= 10 then a = 0

 goto loop

Pagina 147 di 236

strikewright

 rem Suono per il nemico colpito.

 AUDV1 = 4

 AUDC1 = 7

 AUDF1 = 2

 g = g + 1

 drawscreen

 if g < 5 then strikewright

 g = 0

 AUDV1 = 0 : AUDC1 = 0 : AUDF1 = 0

 goto loop

castlecompleted

 rem Suono per il completamento del muro.

 AUDV1 = y

 AUDC1 = 4

 AUDF1 = y

 y = y + 1

 drawscreen

 if y < 64 then goto castlecompleted

 rem Aumenta la difficoltà per il livello successivo.

 y = 0

 d = d - 1

 score = score + 2

 if d <= 30 then a = 4

 if d <= 20 then a = 2 : h = 40

 if d <= 10 then a = 1 : h = 60

 if d = 0 then d = 1

 AUDV1 = 0 : AUDC1 = 0 : AUDF1 = 0

 goto preloop

Pagina 148 di 236

Minotaur

 rem **

 rem * Minotaur *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Il giocatore controlla un eroe (player0) in un labirinto a *

 rem * schermate multiple. Lo scopo è esplorare, raccogliere oggetti *

 rem * (lancia, scudo), sconfiggere un Minotauro (player1) e *

 rem * raccogliere monete per aumentare il punteggio. Il mondo è *

 rem * composto da diverse stanze interconnesse. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - Esplorazione a Schermate Multiple: Il gioco gestisce il *

 rem * passaggio tra diverse stanze (`room`). Quando il giocatore *

 rem * raggiunge un bordo dello schermo, la variabile `room` viene *

 rem * aggiornata, viene chiamata la subroutine della nuova stanza *

 rem * e il giocatore viene riposizionato sul lato opposto. *

 rem * - Sistema di Inventario e Stati: Variabili come `haslance`, *

 rem * `hasshield` e `hascoin` fungono da flag per tenere traccia *

 rem * degli oggetti raccolti e degli stati del giocatore (es. può *

 rem * attaccare, è protetto, ha raccolto la moneta). *

 rem * - Logica di Combattimento: Il giocatore può attaccare con una *

 rem * lancia (missile0), la cui forma e direzione cambiano in *

 rem * base all'orientamento del giocatore. Il Minotauro ha una *

 rem * sorta di "punti vita" (`minotauro`) e cambia aspetto quando *

 rem * viene colpito. *

 rem * - IA di Pattugliamento: Il Minotauro non insegue direttamente *

 rem * il giocatore, ma si muove lungo un percorso predefinito, *

 rem * pattugliando l'area. *

 rem * - Gestione di Oggetti Multipli con Sprite: Il gioco usa gli *

 rem * oggetti TIA in modo creativo. `player0` è l'eroe, `player1` è*

 rem * il Minotauro O la moneta, `missile0` è la lancia e `ball` è *

 rem * lo scudo. Il codice gestisce quale oggetto visualizzare in *

 rem * base allo stato del gioco. *

 rem * - Logica di Collisione Avanzata: Il movimento del giocatore *

 rem * viene bloccato dalle pareti del `playfield` ripristinando la *

 rem * sua posizione precedente in caso di collisione. *

 rem **

 set romsize 4k

 set smartbranching on

Pagina 149 di 236

 rem --- Sezione Definizioni Variabili (Alias) ---

 rem Flag per bloccare il movimento dopo una collisione con i muri.

 dim nodown = a

 dim noup = b

 dim noleft = c

 dim noright = d

 rem Numero della stanza corrente.

 dim room = e

 rem Stato della lancia (0=non posseduta, 1=in mano, 2=lanciata, 3=a terra).

 dim haslance = f

 rem Flag per il possesso dello scudo (0=no, 1=sì).

 dim hasshield = g

 rem Flag per indicare se la moneta nella stanza è stata raccolta.

 dim hascoin = h

 rem Variabile temporanea per i numeri casuali.

 dim randnumber = i

 rem Valore della moneta corrente (1, 5, o 32).

 dim coinvalue = j

 rem Direzione del giocatore (1=su, 2=destra, 3=giù, 4=sinistra).

 dim compass = k

 rem "Punti vita" del Minotauro (2=sano, 1=ferito, 0=morto).

 dim minotauro = m

 rem Contatore per l'invulnerabilità temporanea del giocatore dopo essere stato colpito.

 dim hitted = n

init

 rem --- Inizializzazione Globale ---

 score = 0

 COLUBK = $F4

 rem --- Inizializzazione Variabili di Stato ---

 haslance = 0

 hasshield = 0

 hascoin = 0

 coinvalue = 1

 hitted = 0

 room = 0

 nodown = 0

 noup = 0

 noleft = 0

 noright = 0

 rem --- Impostazioni Iniziali Oggetti di Gioco ---

Pagina 150 di 236

 player0x = 24

 player0y = 76

 missile0height = 8

 missile0x = 83

 missile0y = 48

 ballheight = 4

 rem CTRLPF=$21 imposta la palla (scudo) dietro al playfield.

 CTRLPF = $21

 ballx = 0

 bally = 0

 rem per inizializzare le collisioni

 drawscreen

 rem --- Ciclo di Gioco Principale ---

mainloop

 rem Carica la stanza 1 se il gioco è appena iniziato (room=0).

 if room = 0 then gosub room1 : gosub moverderecha : gosub minoheridados : COLUP0 = $86

 rem Imposta la dimensione dello sprite del nemico.

 NUSIZ1 = $10

 rem Imposta il colore del nemico/moneta. Cambia colore in base al valore della moneta.

 COLUP1 = $4A

 if coinvalue = 5 then COLUP1 = $0A

 if coinvalue = 32 then COLUP1 = $1E

 rem Gestisce l'invulnerabilità del giocatore: se è stato colpito, lampeggia.

 if hitted > 0 then hitted = hitted - 1 : COLUP0 = $40 else COLUP0 = $86

 rem --- Logica di Raccolta Oggetti ---

 rem Raccoglie la lancia (missile0).

 if collision(missile0,player0) && haslance = 0 then haslance = 1 : NUSIZ0 = $00 : missile0height

 = 8

 rem Raccoglie la lancia dopo averla lanciata.

 if collision(missile0,player0) && haslance = 3 then haslance = 1 : NUSIZ0 = $00 : missile0height

 = 8

 rem Raccoglie lo scudo (ball).

 if collision(ball,player0) && hasshield = 0 then hasshield = 1

 rem --- Logica delle Collisioni Principali ---

 rem Collisione con Minotauro: se ha lo scudo, lo perde. Se non ce l'ha, muore (non implementato)

.

 if minotauro > 0 && hitted = 0 && collision(player1,player0) && hasshield = 1 then hasshield = 0

 : ballx = 0 : bally = 0 : gosub hit

 if minotauro > 0 && hitted = 0 && collision(player1,player0) && hasshield = 0 then goto gameover

Pagina 151 di 236

 rem Collisione con moneta (quando il minotauro è morto).

 if minotauro = 0 && collision(player1,player0) && hascoin = 0 then hascoin = 1 : score = score +

 coinvalue : gosub colocarmoneda

 rem --- Gestione Input Giocatore (Movimento e Attacco) ---

 if joy0left && !joy0right && !joy0up && !joy0down && noleft = 0 then gosub moverizquierda

 if !joy0left && joy0right && !joy0up && !joy0down && noright = 0 then gosub moverderecha

 if !joy0left && !joy0right && joy0up && !joy0down && noup = 0 then gosub moverarriba

 if !joy0left && !joy0right && !joy0up && joy0down && nodown = 0 then gosub moverabajo

 if joy0fire && haslance = 1 then haslance = 2

 rem --- Logica della Lancia ---

 rem Muove la lancia se è stata lanciata.

 if haslance = 2 && !collision(playfield,missile0) then gosub moverlanza

 rem Ferma la lancia se colpisce un muro.

 if haslance = 2 && collision(playfield,missile0) && compass = 2 then haslance = 3 : missile0x =

missile0x - 0

 if haslance = 2 && collision(playfield,missile0) then haslance = 3

 rem Ferisce il Minotauro se lo colpisce.

 if haslance = 2 && collision(player1,missile0) then haslance = 3 : minotauro = minotauro - 1

 rem --- Logica del Nemico ---

 rem Aggiorna la posizione e l'aspetto del Minotauro.

 if minotauro > 0 then gosub moverenemigo else gosub minomuerto

 if minotauro = 1 then gosub minoheridauno

 rem --- Logica Grafica della Lancia ---

 rem Cambia la forma della lancia (orizzontale/verticale) in base alla direzione.

 if compass = 1 && haslance = 3 then NUSIZ0 = $00 : missile0height = 8

 if compass = 2 && haslance = 3 then NUSIZ0 = $30 : missile0height = 0

 if compass = 3 && haslance = 3 then NUSIZ0 = $00 : missile0height = 8

 if compass = 4 && haslance = 3 then NUSIZ0 = $30 : missile0height = 0

 rem --- Gestione Posizione Oggetti Nelle Stanze ---

 rem Posiziona/nasconde la lancia e lo scudo a seconda della stanza in cui si trova il giocatore.

 if room = 1 && haslance = 0 then missile0x = 83 : missile0y = 48

 if room <> 1 && haslance = 0 then missile0x = 0 : missile0y = 0

 if room = 2 && hasshield = 0 then ballx = 83 : bally = 45

 if room <> 2 && hasshield = 0 then ballx = 0 : bally = 0

 rem --- Logica di Transizione tra le Stanze ---

 rem Controlla se il giocatore ha raggiunto un bordo per cambiare stanza.

 if room = 1 && player0x > 145 then gosub room2 : player0x = 22

 if room = 2 && player0x < 5 then gosub room1 : player0x = 140

Pagina 152 di 236

 if room = 1 && player0y < 10 then gosub room3 : player0y = 80

 if room = 3 && player0y > 85 then gosub room1 : player0y = 10

 if room = 3 && player0x > 145 then gosub room4 : player0x = 22

 if room = 4 && player0x < 5 then gosub room3 : player0x = 140

 if room = 2 && player0y < 5 then gosub room4 : player0y = 80

 if room = 4 && player0y > 85 then gosub room2 : player0y = 10

 if room = 3 && player0y < 10 then gosub room5 : player0y = 80

 if room = 5 && player0y > 85 then gosub room3 : player0y = 10

 if room = 4 && player0x > 145 then gosub room6 : player0x = 22

 if room = 6 && player0x < 5 then gosub room4 : player0x = 140

 if room = 6 && player0x > 145 then gosub room7 : player0x = 22

 if room = 7 && player0x < 5 then gosub room6 : player0x = 140

 if room = 7 && player0x > 145 then gosub room9 : player0x = 22

 if room = 9 && player0x < 5 then gosub room7 : player0x = 140

 if room = 8 && player0y < 5 then gosub room7 : player0y = 80

 if room = 7 && player0y > 85 then gosub room8 : player0y = 10

 rem Disegna il fotogramma e ripete il ciclo.

 drawscreen

 goto mainloop

gameover

 if joy0fire then goto gameover

gameover2

 COLUBK = $08

 drawscreen

 if joy0fire then goto init

 goto gameover2

 rem --- Subroutine di Movimento e Collisione con i Muri ---

moverizquierda

 player0:

 %01101100

 %00100100

 %00100100

 %00011000

 %11111111

 %10011001

 %00100100

 %00111100

 %00110110

end

 rem Imposta la direzione e controlla la collisione con il playfield.

Pagina 153 di 236

 if haslance = 1 then compass = 4

 if collision(playfield,player0) then gosub x001 else gosub x002

 rem Aggiorna la posizione di lancia e scudo per "attaccarli" al giocatore.

 if haslance = 1 then missile0x = player0x : missile0y = player0y - 2

 if hasshield = 1 then ballx = player0x + 7 : bally = player0y - 3

 return

x001

 rem Se c'è collisione, spinge indietro il giocatore.

 player0x = player0x + 1 : noright = 0 : noleft = 1 : noup = 0

 nodown = 0

 return

x002

 rem Se non c'è collisione, esegue il movimento.

 player0x = player0x - 1 : noright = 0 : noleft = 0

 noup = 0 : nodown = 0

 return

x003

 player0x = player0x - 1 : noright = 1 : noleft = 0

 noup = 0 : nodown = 0

 return

x004

 player0x = player0x + 1: noright = 0 : noleft = 0 : noup = 0 : nodown = 0

 return

x005

 player0y = player0y + 1 : noright = 0 : noleft = 0 : noup = 1 : nodown = 0

 return

x006

 player0y = player0y - 1: noright = 0 : noleft = 0 : noup = 0 : nodown = 0

 return

x007

 player0y = player0y - 1 : noright = 0 : noleft = 0 : noup = 0 : nodown = 1

 return

x008

 player0y = player0y + 1: noright = 0 : noleft = 0 : noup = 0 : nodown = 0

 return

moverderecha

 player0:

 %00110110

 %00100100

 %00100100

 %00011000

 %11111111

 %10011001

Pagina 154 di 236

 %00100100

 %00111100

 %01101100

end

 if haslance = 1 then compass = 2

 if collision(playfield,player0) then gosub x003 else gosub x004

 if haslance = 1 then missile0x = player0x + 9 : missile0y = player0y - 2

 if hasshield = 1 then ballx = player0x - 1 : bally = player0y - 3

 return

moverarriba

 player0:

 %01100110

 %00100100

 %00100100

 %00011000

 %11111111

 %10011001

 %00100100

 %00111100

 %00100100

end

 if haslance = 1 then compass = 1

 if collision(playfield,player0) then gosub x005 else gosub x006

 if haslance = 1 then missile0x = player0x : missile0y = player0y - 2

 if hasshield = 1 then ballx = player0x + 7 : bally = player0y - 3

 return

moverabajo

 player0:

 %01100110

 %00100100

 %00100100

 %10011001

 %11111111

 %00011000

 %00100100

 %00111100

 %00100100

end

 if haslance = 1 then compass = 3

 if collision(playfield,player0) then gosub x007 else gosub x008

 if haslance = 1 then missile0x = player0x : missile0y = player0y - 2

 if hasshield = 1 then ballx = player0x + 7 : bally = player0y - 3

 return

Pagina 155 di 236

 rem --- Subroutine di Gioco ---

hit

 rem Attiva l'invulnerabilità temporanea del giocatore.

 if hitted = 0 then hitted = 100

 return

colocarmoneda

 rem Posiziona una moneta in un punto casuale della stanza.

 gosub minoheridados

 if hascoin = 1 then player1x = 0 : player1y = 0

 randnumber = rand

 if hascoin = 0 && randnumber <= 153 then coinvalue = 1

 if hascoin = 0 && randnumber > 153 && randnumber <= 204 then coinvalue = 5

 if hascoin = 0 && randnumber > 204 && randnumber <= 255 then coinvalue = 32

 randnumber = rand

 if hascoin = 0 && randnumber <= 64 then player1x = 28 : player1y = 22

 if hascoin = 0 && randnumber > 65 && randnumber <= 128 then player1x = 118 : player1y = 22

 if hascoin = 0 && randnumber > 129 && randnumber <= 192 then player1x = 28 : player1y = 77

 if hascoin = 0 && randnumber > 193 && randnumber <= 255 then player1x = 118 : player1y = 77

 return

moverlanza

 rem Muove la lancia in base alla direzione del giocatore.

 if compass = 1 then NUSIZ0 = $00 : missile0height = 8 : missile0y = missile0y - 2

 if compass = 2 then NUSIZ0 = $30 : missile0height = 0 : missile0x = missile0x + 2

 if compass = 3 then NUSIZ0 = $00 : missile0height = 8 : missile0y = missile0y + 2

 if compass = 4 then NUSIZ0 = $30 : missile0height = 0 : missile0x = missile0x - 2

 return

moverenemigo

 rem IA di pattugliamento: il Minotauro si muove lungo un percorso rettangolare.

 if minotauro > 0 && player1y = 22 && player1x < 118 then player1x = player1x + 1

 if minotauro > 0 && player1y = 77 && player1x > 28 then player1x = player1x - 1

 if minotauro > 0 && player1x = 118 && player1y < 77 then player1y = player1y + 1

 if minotauro > 0 && player1x = 28 && player1y > 22 then player1y = player1y - 1

 return

 rem --- Subroutine Grafiche Nemico ---

minoheridados

 rem Sprite del Minotauro sano.

 player1:

 %01101100

 %01101100

 %00100100

Pagina 156 di 236

 %00100100

 %00011000

 %00011000

 %11011011

 %11111111

 %00011000

 %00100100

 %01111110

 %01000010

end

 minotauro = 2

 return

minoheridauno

 rem Sprite del Minotauro ferito.

 player1:

 %01101100

 %01101100

 %00100100

 %00100100

 %00011000

 %00011000

 %11011011

 %11111111

 %00011000

 %00100100

 %00111100

end

 return

minomuerto

 rem Sprite del Minotauro sconfitto (ora appare la moneta al suo posto).

 player1:

 %00010000

 %00001000

 %11101011

 %00011101

 %00011101

 %11101011

 %00001000

 %00010000

end

 return

 rem --- Subroutine di Definizione delle Stanze ---

Pagina 157 di 236

 rem Ognuna di queste subroutine definisce la grafica di una stanza

 rem e la logica per la generazione delle monete al suo interno.

room1

 room = 1

 hascoin = 0

 COLUPF = $C0

 playfield:

 XXXXXXXXXXXXX.......XXXXXXXXXXXX

 X..............................X

 X..............................X

 X............XXXXXXX...........X

 X..................X............

 X..................X............

 X..................X............

 X............XXXXXXX...........X

 X..............................X

 X..............................X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 if haslance = 1 then gosub colocarmoneda else hascoin = 1 : gosub colocarmoneda

 if haslance = 3 then haslance = 0 : NUSIZ0 = $00 : missile0height = 8

 return

room2

 room = 2

 hascoin = 0

 playfield:

 XXXXXXXXXXXXX.......XXXXXXXXXXXX

 X..............................X

 X..............................X

 X............XXXXXXX...........X

X.................X

X.................X

X.................X

 X............XXXXXXX...........X

 X..............................X

 X..............................X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 if hasshield = 1 then gosub colocarmoneda else hascoin = 1 : gosub colocarmoneda

 if haslance = 3 then haslance = 0

 return

room3

 room = 3

Pagina 158 di 236

 hascoin = 0

 playfield:

 X......XXXXXXXXX.......XXXXXXXXX

 X..............................X

 X..............................X

 X............XXXXXXX...........X

 X...............................

 X...............................

 X...............................

 X............XXXXXXX...........X

 X..............................X

 X..............................X

 XXXXXXXXXXXXX.......XXXXXXXXXXXX

end

 gosub colocarmoneda

 if haslance = 3 then haslance = 0

 return

room4

 room = 4

 hascoin = 0

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X..............................X

 X..............................X

 X...........X.......X..........X

X.......X...........

X.......X...........

X.......X...........

 X...........X.......X..........X

 X..............................X

 X..............................X

 XXXXXXXXXXXXX.......XXXXXXXXXXXX

end

 gosub colocarmoneda

 if haslance = 3 then haslance = 0

 return

room5

 room = 5

 hascoin = 0

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X..............................X

 X..............................X

Pagina 159 di 236

 X..............................X

 X......XXXXXXXXXXXXXXXXXXXXXXXXX

 X......X.......................X

 X......X.......................X

 X......X.......................X

 X......X.......................X

 X......X.......................X

 X......XXXXXXXXX.......XXXXXXXXX

end

 gosub colocarmoneda

 if haslance = 3 then haslance = 0

 return

room6

 room = 6

 hascoin = 1

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 XXXXXXXXXXXXXXXXXXXXXXXX........

 XXXXXXXXXXXXXXXXXXXXXXXX........

 XXXXXXXXXXXXXXXXXXXXXXXX........

XXXXXXXXXXXXXXX.......X

XXXXXXXXXXXXXXX.......X

XXXXXXXXXXXXXXX.......X

 X..............................X

 X..............................X

 X..............................X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 gosub colocarmoneda

 if haslance = 3 then haslance = 0

 return

room7

 room = 7

 hascoin = 1

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

 XXXXXXXXXXXXX..................X

 XXXXXXXXXXXXX..................X

 XXXXXXXXXXXXX..................X

 XXXXXXXXXXXXX.......XXXXXXXXXXXX

Pagina 160 di 236

 XXXXXXXXXXXXX.......X...........

 XXXXXXXXXXXXX.......X...........

 XXXXXXXXXXXXX.......X..........X

end

 gosub colocarmoneda

 if haslance = 3 then haslance = 0

 return

room8

 room = 8

 hascoin = 0

 playfield:

 XXXXXXXXXXXXX.......XX.........X

 X...................XX.........X

 X...................XX.........X

 X...................XX.........X

 X...................XX.........X

 X...................XX.........X

 X.......XXXXXXXXXXXXXX.........X

 X..............................X

 X..............................X

 X..............................X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 gosub colocarmoneda

 if haslance = 3 then haslance = 0

 return

room9

 room = 9

 hascoin = 0

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 X..............................X

 X..............................X

 X............XXXXXXX...........X

 X............X.................X

 X............X.................X

 X............X.................X

 X............XXXXXXX...........X

X

X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 gosub colocarmoneda

Pagina 161 di 236

 if haslance = 3 then haslance = 0

 return

Pagina 162 di 236

Snappy

 rem **

 rem * Snappy *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Il giocatore controlla un esploratore (player0) che deve *

 rem * attraversare una voragine usando una liana (playfield). Il *

 rem * tempismo è cruciale: se l'esploratore salta al momento *

 rem * sbagliato, cadrà nella voragine dove un coccodrillo *

 rem * (Snappy, player1) lo attende. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - Macchina a Stati (State Machine): Il cuore del programma. *

 rem * La variabile `gamestate` controlla lo stato attuale del *

 rem * giocatore (in caduta, in attesa, in corsa, sulla liana, *

 rem * etc.). Il `main_loop` delega la logica a una subroutine *

 rem * "centralino" (`handlestate`) che esegue solo il codice *

 rem * relativo allo stato corrente, mantenendo il programma *

 rem * organizzato ed efficiente. *

 rem * - Animazione basata su Timer: L'animazione della liana, del *

 rem * giocatore e del coccodrillo è gestita da contatori *

 rem * (`frame`, `playerframe`, `snappyframe`) che vengono *

 rem * incrementati a ogni ciclo. Questo permette di alternare *

 rem * le definizioni grafiche per creare l'illusione del *

 rem * movimento. *

 rem * - Gestione Audio con Subroutine: Gli effetti sonori sono *

 rem * incapsulati in piccole subroutine (`playvinesound`, *

 rem * `playdeathsound`, etc.) e attivati in punti specifici del *

 rem * codice per sincronizzarli con l'azione. *

 rem * - Generazione del Seme Casuale (Seed): Nella schermata del *

 rem * titolo, un contatore (`randseed`) viene incrementato. *

 rem * Questo valore viene poi usato per inizializzare il *

 rem * generatore di numeri casuali `rand`, garantendo che la *

 rem * posizione iniziale del giocatore cambi a ogni partita. *

 rem **

 rem --- Direttive del Compilatore ---

 set romsize 4k

 rem --- Sezione Definizioni Variabili (Alias) ---

 rem Contatore per l'animazione della liana (0-119). Determina la posizione della liana.

 dim frame = d

Pagina 163 di 236

 rem Contatore per l'animazione del giocatore. Decide quale frame di animazione dell'eroe mostra

re.

 dim playerframe = e

 rem Gestore dello stato di gioco. La variabile "cervello" che controlla la logica corrente.

 dim gamestate = f

 rem Contatore per l'animazione del coccodrillo 'Snappy'.

 dim snappyframe = g

 rem Variabile per l'effetto cambio colore nella schermata del titolo.

 dim introcolour = h

 rem Contatore per l'animazione di Snappy che mangia il giocatore.

 dim snappyeatingframe = i

 rem Contatore delle vite del giocatore.

 dim life = j

 rem Contatore usato per generare un seme casuale per il comando 'rand'.

 dim randseed = k

 rem --- Inizializzazione delle Variabili di Gioco (eseguita una sola volta) ---

 rem Imposta la posizione iniziale della liana.

 frame = 30

 rem Azzera il contatore per il seme casuale.

 randseed = 0

 rem Inizia con il primo frame di animazione del giocatore.

 playerframe = 0

 rem --- Definizione degli Stati della Macchina a Stati (gamestate) ---

 rem 1 = Il giocatore sta cadendo con il paracadute.

 rem 2 = Il giocatore è a terra e in attesa dell'input.

 rem 3 = Il giocatore sta correndo verso la voragine.

 rem 4 = Il giocatore è aggrappato alla liana.

 rem 5 = Il giocatore corre verso il traguardo dopo la liana.

 rem 6 = Il giocatore è al sicuro (stato iniziale o dopo aver completato un round).

 rem 7 = Il giocatore sta cadendo nella voragine (morte).

 rem 8 = Il coccodrillo 'Snappy' sta mangiando il giocatore.

 rem Inizia il gioco nello stato 'sicuro'.

 gamestate = 6

 rem --- Impostazioni Iniziali HUD ---

 rem Imposta il colore per il punteggio.

 scorecolor = 22

 rem Imposta il colore iniziale per l'effetto del titolo.

 introcolour = 0

 rem Salta direttamente al ciclo di gioco principale.

Pagina 164 di 236

 goto main

 rem ==

 rem ====== Sottoprogramma: Schermata Titolo e Attesa =========

 rem ==

showintro

 rem Definisce la grafica statica del titolo (testo "SNAPPY").

 playfield:

 ...XXX..........................

 ..X...X.........................

 ..X.............................

 ...XXX..XX...XXX..XX..XX..X..X..

 X.X.X.X..X..X.X.X.X.X..X..

 ..X...X.X.X.X..X..X.X.X.X.X..X..

 ...XXX..X.X..XX.X.XX..XX...XXX..

 X...X......X..

 X...X....XX...

end

 rem --- Logica della Schermata Titolo ---

 rem Incrementa la variabile per creare un effetto di cambio colore arcobaleno.

 introcolour = introcolour + 1

 COLUPF = introcolour

 rem Imposta i registri TIA: sfondo e sprite neri per nasconderli.

 COLUBK = 0

 COLUP0 = 0

 COLUP1 = 0

 rem Nasconde fisicamente gli sprite posizionandoli fuori dallo schermo.

 player0x = 0

 player0y = 0

 player1x = 0

 player1y = 0

 rem Incrementa il seme per il generatore di numeri casuali mentre il giocatore attende.

 randseed = randseed + 1

 rem Silenzia entrambi i canali audio.

 gosub stopvoiceone

 gosub stopvoicezero

 rem Disegna lo schermo e attende l'input del giocatore.

 drawscreen

 rem Se il giocatore preme fuoco, inizia il gioco.

 if joy0fire then goto initialize

Pagina 165 di 236

 rem Altrimenti, continua a mostrare la schermata del titolo.

 goto showintro

 rem ==

 rem ====== Sottoprogramma: Inizializzazione Partita ======

 rem ==

initialize

 rem Azzera il punteggio e imposta le vite.

 score = 0

 life = 10

 rem Inizializza il generatore di numeri casuali con il seme raccolto durante la schermata del ti

tolo.

 if randseed = 0 then rand = 1 else rand = randseed

 rem Torna al ciclo di gioco principale per iniziare la partita.

 goto main

 rem ===

 rem ====== Sottoprogramma: Animazione di Snappy =======

 rem ===

animatesnappy

 rem Alterna due sprite per il coccodrillo in base al contatore 'snappyframe' per creare un'anima

zione a 2 frame.

 if snappyframe = 0 then player1:

 %00111100

 %00111100

 %00111100

 %00111100

 %01100111

 %01100110

 %01100110

 %11000011

 %11000011

 %11000011

 %10000001

end

 if snappyframe = 10 then player1:

 %00111100

 %00111100

 %00111100

 %00111100

 %00111110

 %00111100

 %00111100

 %00111100

Pagina 166 di 236

 %00011100

 %00011100

 %00011000

end

 return

 rem ==

 rem ====== Sottoprogramma: Animazione della Liana ======

 rem ==

swingvine

 rem Questa lunga catena di 'if' disegna una diversa grafica del playfield in base al valore del

contatore 'frame', simulando l'oscillazione della liana.

 if frame = 0 then playfield:

 XXXXXXXXX.....

 X.........

 X..........

 X...........

 X............

 X.............

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 if frame = 10 || frame = 110 then playfield:

 XXXXXXXXX.....

 X.........

 X..........

 X..........

 X...........

 X...........

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 if frame = 20 || frame = 100 then playfield:

 XXXXXXXXX.....

 X.........

 X.........

 X..........

Pagina 167 di 236

 X..........

 X..........

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 if frame = 30 || frame = 90 then playfield:

 XXXXXXXXX.....

 X.........

 X.........

 X.........

 X.........

 X.........

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 if frame = 40 || frame = 80 then playfield:

 XXXXXXXXX.....

 X.........

 X.........

 X........

 X........

 X........

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 if frame = 50 || frame = 70 then playfield:

 XXXXXXXXX.....

 X.........

 X........

 X........

 X.......

 X......

 XXXXXXXXXXXXXXXXXX.........XXXXX

Pagina 168 di 236

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 if frame = 60 then playfield:

 XXXXXXXXX.....

 X.........

 X........

 X.......

 X......

 X.....

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXX.........XXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

 rem Sincronizza l'audio con l'animazione della liana.

 if frame = 0 then gosub playvinesound

 if frame = 60 then gosub playvinesecondsound

 rem Spegne il suono dopo pochi frame per creare un effetto breve.

 if frame = 3 then gosub stopvoicezero

 if frame = 63 then gosub stopvoicezero

 return

 rem ===================================

 rem ==== Sottoprogrammi Audio =========

 rem ===================================

playvinesound

 AUDV0=4:AUDC0=12:AUDF0=28

 return

playvinesecondsound

 AUDV0=4:AUDC0=12:AUDF0=20

 return

playdeathsound

 AUDV1=4:AUDC1=14:AUDF1=20

 return

playvictorysound

 AUDV1=4:AUDC1=4:AUDF1=10

 return

Pagina 169 di 236

stopvoicezero

 AUDV0=0

 return

stopvoiceone

 AUDV1=0

 return

 rem ==

 rem ====== Sottoprogrammi Grafici: Disegno del Giocatore ======

 rem ==

drawplayer

 rem Alterna due sprite per l'animazione di corsa del giocatore in base al timer 'playerframe'.

 if playerframe = 0 then player0:

 %00110110

 %00100100

 %00100100

 %00011000

 %01111110

 %00011000

 %00111100

 %00111100

end

 if playerframe = 10 then player0:

 %00011100

 %00011000

 %00011000

 %00011010

 %00111100

 %01011000

 %00111100

 %00111100

end

 return

drawplayerparachute

 rem Sprite speciale per il giocatore quando si lancia col paracadute.

 player0:

 %00110110

 %00100100

 %00100100

 %00011000

Pagina 170 di 236

 %00111100

 %01011010

 %01111110

 %01111110

 %00100100

 %00100100

 %01000010

 %10000001

 %11111111

 %11111111

 %01111110

 %00111100

end

 return

drawplayerbeingeaten

 rem Sprite del giocatore mentre viene mangiato.

 player0:

 %00000000

 %00000000

 %00000000

 %00000000

 %00011110

 %00011000

 %00111100

 %00111100

end

 return

 rem =================================

 rem ====== CICLO DI GIOCO PRINCIPALE ======

 rem =================================

main

 rem Controlla se il gioco e' finito (Game Over). Se si, torna alla schermata del titolo.

 if life = 0 then goto showintro

 rem Aggiorna la grafica della liana (playfield).

 gosub swingvine

 rem Aggiorna la grafica di Snappy (player1).

 gosub animatesnappy

Pagina 171 di 236

 rem Seleziona lo sprite corretto per il giocatore (player0) in base allo stato attuale del gioco

.

 rem Se sta cadendo, disegna il paracadute.

 if gamestate = 1 then gosub drawplayerparachute

 rem Se viene mangiato, disegna l'animazione corrispondente.

 if gamestate = 8 then gosub drawplayerbeingeaten

 rem In tutti gli altri casi, disegna l'animazione di corsa.

 if gamestate <> 1 && gamestate <> 8 then gosub drawplayer

 rem Incrementa i contatori per le animazioni.

 frame=frame+1

 playerframe=playerframe+1

 snappyframe=snappyframe+1

 rem Accelera l'animazione di Snappy quando sta mangiando il giocatore.

 if gamestate = 8 then snappyframe=snappyframe+1

 rem Azzera i contatori quando raggiungono il loro limite per creare un loop.

 if playerframe >= 20 then playerframe=0

 if frame>=120 then frame=0

 if snappyframe >= 20 then snappyframe=0

 rem Esegue la logica dello stato di gioco corrente ("Centralino" della Macchina a Stati).

 gosub handlestate

 rem Imposta i registri TIA volatili ad ogni frame.

 rem Colore di Snappy

 COLUP1 = 206

 rem Colore del Giocatore

 COLUP0 = 28

 rem Colore dello Sfondo (cielo/acqua)

 COLUBK = 192

 rem Colore del Playfield (liana/terreno)

 COLUPF = 88

 rem Comando che dice al TIA di disegnare l'intero frame.

 drawscreen

 rem Torna all'inizio del ciclo di gioco.

 goto main

 rem ===

 rem = Sottoprogramma: Centralino della Macchina a Stati =

Pagina 172 di 236

 rem = Esegue la subroutine corretta in base al valore di 'gamestate' =

 rem ===

handlestate

 if gamestate = 6 then gosub createplayer : return

 if gamestate = 1 then gosub dropplayer : return

 if gamestate = 2 then gosub playerwaiting : return

 if gamestate = 3 then gosub playerrunning : return

 if gamestate = 4 then gosub playeronvine : return

 if gamestate = 7 then gosub playerdying : return

 if gamestate = 5 then gosub playerruntosafety : return

 if gamestate = 8 then gosub snappyeating : return

 return

snappyeating

 rem Gestisce l'animazione di Snappy che mangia il giocatore.

 snappyeatingframe = snappyeatingframe + 1

 playerframe=0

 rem Dopo 60 frame, il round finisce e il giocatore perde una vita.

 if snappyeatingframe = 60 then gosub stopvoiceone : gamestate = 6 : life=life-1

 return

playerdying

 rem Il giocatore cade verso il basso nella voragine.

 player0y = player0y + 1

 rem Quando raggiunge il fondo, passa allo stato 'snappyeating'.

 if player0y = 74 then gamestate = 8 : gosub playdeathsound

 return

playerruntosafety

 rem Il giocatore corre verso il bordo destro dello schermo per completare il livello.

 player0x = player0x + 1

 rem Se ha raggiunto la salvezza alla fine dello schermo, il round è vinto.

 if player0x = 139 then gamestate = 6 : score = score + 1 : gosub stopvoiceone : life=life-1

 return

playeronvine

 rem Aggiorna la posizione orizzontale del giocatore per seguire l'oscillazione della liana.

 if frame = 20 then player0x = 98

 if frame = 30 then player0x = 106

 if frame = 40 then player0x = 111

 if frame = 50 then player0x = 116

 if frame = 60 then player0x = 121

Pagina 173 di 236

 rem Quando la liana raggiunge l'altro lato, il giocatore si stacca.

 if frame = 60 then gamestate = 5 : gosub playvictorysound

 return

playerrunning

 rem Il giocatore corre verso la voragine.

 player0x = player0x + 1

 rem Controlla se il giocatore afferra la liana quando raggiunge il bordo della voragine.

 if player0x = 90 then gosub didplayercatchvine

 return

didplayercatchvine

 rem Controlla se la liana ('frame') è nella posizione giusta per essere afferrata. Se non lo è,

il giocatore cade.

 if frame <= 10 || frame >= 115 then gamestate = 4 else gamestate = 7 : player1x = 90

 return

playerwaiting

 rem Blocca l'animazione del giocatore in attesa dell'input.

 playerframe = 0

 rem Se il giocatore preme 'fuoco', inizia a correre.

 if joy0fire then gamestate = 3

 return

dropplayer

 rem Il giocatore scende con il paracadute.

 player0y = player0y + 1

 rem Quando raggiunge il terreno, passa allo stato di attesa.

 if player0y = 56 then gamestate = 2

 rem Blocca l'animazione durante la discesa per mostrare il giocatore fermo.

 playerframe = 0

 return

createplayer

 rem Inizia un nuovo round. Genera il giocatore in una posizione casuale.

 player0x = 20 + (rand / 4)

 player0y = 10

 rem Imposta lo stato iniziale su 'dropplayer' (caduta col paracadute).

 gamestate = 1

 playerframe = 0

Pagina 174 di 236

 rem Resetta la posizione di Snappy in fondo alla voragine.

 player1x = 102

 player1y = 80

 snappyeatingframe = 0

 return

Pagina 175 di 236

Gnamm

 rem **

 rem * Gnamm *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Una versione semplificata del classico vidogame. Il giocatore *

 rem * (player0) si muove in un labirinto statico, mangiando palline. *

 rem * Un fantasma (player1) insegue il giocatore attraverso il *

 rem * labirinto. Il gioco include la musica di inizio, i suoni per *

 rem * le palline e una sequenza di animazione per la morte del *

 rem * giocatore. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - IA di Inseguimento Semplice: Il fantasma non si muove a *

 rem * caso, ma cerca attivamente di raggiungere il giocatore. *

 rem * Ad ogni incrocio, decide se dare priorità al movimento *

 rem * orizzontale o verticale per ridurre la distanza dal suo *

 rem * bersaglio, pur rispettando i vincoli del labirinto. *

 rem * - Uso Intensivo dei Bit-Flag: Quasi tutta la logica di stato *

 rem * del gioco è gestita tramite singoli bit della variabile b, *

 rem * controllando movimento, suoni, animazioni e logica. *

 rem * - Movimento su Griglia: Il movimento del giocatore è vincolato *

 rem * a una griglia invisibile. I bit-flag `b{0}` e `b{1}` *

 rem * verificano se il giocatore è a un "incrocio" e può cambiare *

 rem * direzione. *

 rem * - Animazione a Frame Multipli per Direzione: Il giocatore ha *

 rem * set di animazioni diversi per ogni direzione di movimento *

 rem * (su, giù, sinistra/destra), creando un effetto più realistico. *

 rem * - Interazione Dinamica con il Playfield: Le palline da *

 rem * mangiare sono parte del `playfield`. Il comando `pfpixel` *

 rem * viene usato per "cancellarle" dinamicamente. *

 rem * - Kernel Option `pfcolors`: Questa opzione viene usata per *

 rem * dare al labirinto un aspetto bicolore. *

 rem **

 rem --- Direttive del Compilatore ---

 set romsize 4k

 set kernel_options pfcolors

 set smartbranching on

 rem --- Alias delle Variabili ---

 dim player_x = player0x

Pagina 176 di 236

 dim player_y = player0y

 dim ghost_x = player1x

 dim ghost_y = player1y

 dim player_dir = c

 dim ghost_dir = r

 dim ghost_can_h = t

 dim ghost_can_v = u

 dim tmp1 = v

 dim tmp2 = w

 dim framecounter = z

 rem bit-flags:

 rem b{0} = giocatore a incrocio orizzontale

 rem b{1} = giocatore a incrocio verticale

 rem b{2} = toggle movimento giocatore (per rallentare)

 rem b{3} = direzione orizzontale giocatore (0=destra,1=sinistra)

 rem b{4} = sequenza di fine livello

 rem b{5} = suono "waka-waka" attivo

 rem b{6} = animazione di morte attiva

 rem b{7} = sequenza di inizio partita attiva

 rem Imposta il flag b{7} per indicare che siamo nella sequenza di inizio.

 b{7}=1

 rem --- Stato 0: Inizio Partita / Animazione Iniziale ---

beginning

 g=0

 rem Definisce la grafica del labirinto.

 playfield:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 ..X.X.......X.X..X.X.......X.X..

 ..XXXXXXXXXXXXX..XXXXXXXXXXXXX..

 ..X.X.X.X.X.X.X..X.X.X.X.X.X.X..

 ..XXXXXXXXXXXXX..XXXXXXXXXXXXX..

 X.X.X..........X.X.X......

 ..XXXXXXXXXXXXX..XXXXXXXXXXXXX..

 ..X.X.X.X.X.X.X..X.X.X.X.X.X.X..

 ..XXXXXXXXXXXXX..XXXXXXXXXXXXX..

 ..X.X.......X.X..X.X.......X.X..

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

Pagina 177 di 236

 rem Definisce i colori per ogni linea del playfield.

 pfcolors:

 130

 26

 130

 26

 130

 26

 130

 26

 130

 26

 130

 130

end

 rem Imposta i colori, la posizione iniziale del giocatore e attiva il suono di inizio.

 COLUPF=h : COLUP0=26 : scorecolor=14

 player_x=77 : player_y=48 : h=130

 if b{7} then AUDV0=8 : AUDV1=8 : AUDC0=4 : AUDC1=4

 b{6}=0

 drawscreen

 rem Definizione grafica del giocatore

 player0:

 %00111100

 %01111110

 %11111111

 %11100000

 %11111111

 %01011110

 %00111100

end

 rem Definizione grafica del nemico (Fantasma)

 player1:

 %01010100

 %11111110

 %11111110

 %11111110

 %11010110

 %01111100

 %00111000

Pagina 178 di 236

end

 rem Posiziona il nemico e imposta il suo colore.

 ghost_x=77 : ghost_y=80

 COLUP1 = $32

noise

 rem Gestisce la musica di inizio partita.

 if b{7} then a=a+1

 if !b{7} then c=0 : goto main

 if a>16 then a=0 : c=c+1

 if c=1 then AUDF0=4 : AUDF1=18

 if c=2 then AUDF0=12 : AUDF1=14

 if c=3 then AUDF0=4 : AUDF1=18

 if c=4 then AUDF0=8 : AUDF1=14

 if c=5 then k=0 : c=0 : goto anim

 goto beginning

 rem --- Ciclo di Gioco Principale ---

main

 rem Disattiva il flag della sequenza di inizio.

 b{7}=0

 rem Esegui la logica del fantasma

 gosub update_ghost_ai

 rem Imposta il volume del suono (k è il contatore del suono "waka-waka").

 AUDV0=k : AUDV1=0

 rem Controlla la collisione con le palline del playfield.

 if collision(player0,playfield) && g<50 then k=9 : b{5}=1 : score=score+1 : g=g+1 : pfpixel e f

off

 if !collision(player0,playfield) && b{5} then b{5}=1

 rem Gestisce il suono "waka-waka" quando si mangia.

 if b{5} then k=k-1 : AUDC0=9 : AUDF0=9

 if b{5} && k<1 then k=0 : b{5}=0

 rem Controlla se tutte le palline sono state mangiate (g=70).

 if collision(player0,playfield) && g=50 then g=0 : b{5}=0 : k=0 : b{4}=1 : c=0 : a=0 : b{3}=0 :

AUDV0=0

 if b{4} then j=j+1

 rem Gestisce l'animazione e il suono della morte del giocatore.

 if b{6} then AUDV0=k : AUDF0=m : AUDC0=4 : n=n+1

 if n=4 then k=k-1 : n=0 : o=o+1 : p=p+1

 if n=3 then m=m-1

Pagina 179 di 236

 if o>5 then k=0

 if o>6 then o=0 : k=15

 if b{6} && m=2 then o=0 : p=0 : k=0

 if b{6} && m=2 then b{6}=0 : n=0 : c=0 : q{0}=1

 rem --- Logica di Movimento su Griglia (Giocatore) ---

 b{0}=0 : b{1}=0

 if player_x=17 then b{1}=1

 if player_x=77 then b{1}=1

 if player_x=137 then b{1}=1

 if player_y=16 then b{0}=1

 if player_y=32 then b{0}=1

 if player_y=48 then b{0}=1

 if player_y=64 then b{0}=1

 if player_y=80 then b{0}=1

 rem Imposta i colori volatili.

 COLUP0=26 : scorecolor=14

 COLUP1 = $32

 drawscreen

 rem Se il flag q{0} è attivo, entra in pausa dopo la morte.

 if q{0} then goto pause

 rem Se il flag b{6} è attivo, continua l'animazione di morte.

 if b{6} then goto anim_death

 rem Gestisce l'animazione di movimento del giocatore.

 if !b{4} then a=a+1

 if a>20 then a=0

 rem Gestisce la sequenza di fine livello.

 if b{4} && j=20 then j=0 : i=i+1

 if b{4} && i=5 then i=0 : b{4}=0 : AUDV0=0 : goto beginning

 if b{4} then goto main

 rem --- Gestione Collisione Giocatore-Fantasma ---

 if collision(player0,player1) && !b{6} && !b{5} then k=15 : m=31 : b{6}=1 : c=0

 rem --- Gestione Input Giocatore ---

 if joy0left && b{0} then player_dir=1

 if joy0right && b{0} then player_dir=2

 if joy0up && b{1} then player_dir=3

 if joy0down && b{1} then player_dir=4

Pagina 180 di 236

 rem salta un frame se il giocatore ha mangiato una pallina

 if k = 8 then goto chomp_delay

 rem Muove il giocatore nella direzione `c` memorizzata.

 if b{2} then b{2}=0 else b{2}=1

 if b{2} && player_dir=1 && player_x>17 then player_x=player_x-1 : b{3}=1

 if b{2} && player_dir=2 && player_x<137 then player_x=player_x+1 : b{3}=0

 if b{2} && player_dir=3 && player_y>16 then player_y=player_y-1

 if b{2} && player_dir=4 && player_y<80 then player_y=player_y+1

chomp_delay

 rem Specchia lo sprite (REFP0) in base alla direzione orizzontale.

 if b{3} then REFP0=8 else REFP0=0

 rem Calcola la coordinata del playfield sotto il giocatore per cancellare le palline.

 if b{3} then e=(player_x-17)/4

 if !b{3} then e=(player_x-10)/4

 f=(player_y-1)/8

 goto anim

pause

 rem Pausa dopo la morte, prima di ricominciare.

 r=r+1 : player_x=77 : player_y=48

 if r>60 then r=0 : b{7}=1 : q{0}=0 : AUDF0=4 : AUDF1=18 : a=0 : c=1 : score = 0 : goto beginning

 goto anim

 rem ========= SUBROUTINE IA FANTASMA =========

update_ghost_ai

 rem Non muovere il fantasma se il giocatore è morto

 if b{6} || q{0} then return

 rem Non muovere il fantasma durante lo schema di fine livello

 if b{4} then return

 rem --- Logica di Movimento su Griglia per il Fantasma ---

 ghost_can_h=0 : ghost_can_v=0

 if ghost_x=17 then ghost_can_v=1

 if ghost_x=77 then ghost_can_v=1

 if ghost_x=137 then ghost_can_v=1

 if ghost_y=16 then ghost_can_h=1

 if ghost_y=32 then ghost_can_h=1

 if ghost_y=48 then ghost_can_h=1

 if ghost_y=64 then ghost_can_h=1

Pagina 181 di 236

 if ghost_y=80 then ghost_can_h=1

 rem --- Logica Decisionale del Fantasma ---

 rem Se il fantasma è a un incrocio (può cambiare direzione)

 if ghost_can_h || ghost_can_v then goto update_ghost_ai2

 goto update_ghost_ai3

update_ghost_ai2

 rem Logica di Inseguimento: scegli la direzione migliore

 rem Priorità al movimento orizzontale se è la distanza maggiore

 if player_x > ghost_x then tmp1 = player_x - ghost_x

 if player_x <= ghost_x then tmp1 = ghost_x - player_x

 if player_y > ghost_y then tmp2 = player_y - ghost_y

 if player_y <= ghost_y then tmp2 = ghost_y - player_y

 if tmp1 > tmp2 then goto update_ghost_ai2c

 rem Altrimenti, priorità al movimento verticale

 if ghost_y < player_y && ghost_can_v && ghost_dir <> 1 then ghost_dir = 2

 if ghost_y > player_y && ghost_can_v && ghost_dir <> 2 then ghost_dir = 1

 if ghost_x < player_x && ghost_can_h && ghost_dir <> 3 then ghost_dir = 4

 if ghost_x > player_x && ghost_can_h && ghost_dir <> 4 then ghost_dir = 3

 goto update_ghost_ai3

update_ghost_ai2c

 if ghost_x < player_x && ghost_can_h && ghost_dir <> 3 then ghost_dir = 4

 if ghost_x > player_x && ghost_can_h && ghost_dir <> 4 then ghost_dir = 3

 if ghost_y < player_y && ghost_can_v && ghost_dir <> 1 then ghost_dir = 2

 if ghost_y > player_y && ghost_can_v && ghost_dir <> 2 then ghost_dir = 1

update_ghost_ai3

 framecounter = framecounter + 1

 rem Muovi il fantasma solo ogni due frame

 if framecounter{0} then return

 rem --- Muove il Fantasma nella sua direzione corrente ---

 if ghost_dir = 1 && ghost_can_v then ghost_y = ghost_y - 1

 if ghost_dir = 2 && ghost_can_v then ghost_y = ghost_y + 1

 if ghost_dir = 3 && ghost_can_h then ghost_x = ghost_x - 1

 if ghost_dir = 4 && ghost_can_h then ghost_x = ghost_x + 1

 return

Pagina 182 di 236

 rem --- Centralino Animazioni ---

anim

 rem Seleziona il set di animazioni corretto in base alla direzione di movimento.

 if c<3 then goto anim_lr

 if c=3 then goto anim_up

 if c=4 then goto anim_dn

anim_lr

 rem Animazione per il movimento orizzontale (bocca che si apre e chiude).

 if a<5 then goto frame_1

 if a>4 && a<10 then goto frame_2

 if a>9 && a<15 then goto frame_3

 if a>14 then goto frame_2

anim_up

 rem Animazione per il movimento verso l'alto.

 if a<5 then goto frame_1_up

 if a>4 && a<10 then goto frame_2_up

 if a>9 && a<15 then goto frame_3_up

 if a>14 then goto frame_2_up

anim_dn

 rem Animazione per il movimento verso il basso.

 if a<5 then goto frame_1_down

 if a>4 && a<10 then goto frame_2_down

 if a>9 && a<15 then goto frame_3_down

 if a>14 then goto frame_2_down

anim_death

 rem Seleziona il frame per l'animazione di morte.

 if p<4 then goto death_frame_1

 if p>3 && p<8 then goto death_frame_2

 if p>7 && p<12 then goto death_frame_3

 if p>11 && p<16 then goto death_frame_4

 if p>15 && p<20 then goto death_frame_5

 if p>19 && p<24 then goto death_frame_6

 if p>23 then goto death_frame_7

 rem --- Subroutine Grafiche: Animazione di Morte ---

death_frame_1

 player0:

 %0011100

 %0111110

 %1100011

Pagina 183 di 236

 %1100011

 %1100011

 %0110110

 %0010100

end

 goto main

death_frame_2

 player0:

 %0011100

 %0011100

 %0110110

 %0110110

 %1110111

 %1110111

 %1100011

end

 goto main

death_frame_3

 player0:

 %0011100

 %0110110

 %1110111

 %1100011

 %0000000

 %0000000

 %0000000

end

 goto main

death_frame_4

 player0:

 %1111111

 %0111110

 %0000000

 %0000000

 %0000000

 %0000000

 %0000000

end

 goto main

death_frame_5

 player0:

 %0000000

 %0000000

Pagina 184 di 236

 %0010100

 %0001000

 %0010100

 %0000000

 %0000000

end

 goto main

death_frame_6

 player0:

 %1000001

 %0100010

 %0010100

 %0000000

 %0010100

 %0100010

 %1000001

end

 goto main

death_frame_7

 player0:

 %0010100

 %0000000

 %0100010

 %0000000

 %0100010

 %0000000

 %0010100

end

 goto main

 rem --- Subroutine Grafiche: Animazione Movimento ---

frame_1_down

 player0:

 %0110110

 %1110111

 %1110111

 %1110111

 %1111111

 %0111010

 %0011100

end

 goto main

frame_2_down

Pagina 185 di 236

 player0:

 %0100010

 %1100011

 %1110111

 %1110111

 %1111111

 %0111010

 %0011100

end

 goto main

frame_3_down

 player0:

 %0100010

 %1100011

 %1100011

 %1110111

 %1111111

 %0111010

 %0011100

end

 goto main

frame_1_up

 player0:

 %0011100

 %0111010

 %1111111

 %1110111

 %1110111

 %1110111

 %0110110

end

 goto main

frame_2_up

 player0:

 %0011100

 %0111010

 %1111111

 %1110111

 %1110111

 %1100011

 %0100010

end

 goto main

Pagina 186 di 236

frame_3_up

 player0:

 %0011100

 %0111010

 %1111111

 %1110111

 %1100011

 %1100011

 %0100010

end

 goto main

frame_1

 player0:

 %00111100

 %01111110

 %11111111

 %11100000

 %11111111

 %01011110

 %00111100

end

 goto main

frame_2

 player0:

 %00111100

 %01111110

 %11111100

 %11100000

 %11111100

 %01011110

 %00111100

end

 goto main

frame_3

 player0:

 %00111100

 %01111100

 %11110000

 %11100000

 %11110000

Pagina 187 di 236

 %01011100

 %00111100

end

 goto main

Pagina 188 di 236

Highway Racer

 rem **

 rem * Highway Racer (Corse in Autostrada) *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Un gioco di corse con visuale dall'alto e scrolling verticale. *

 rem * Il giocatore controlla un'auto (player0) e deve evitare le *

 rem * auto nemiche (player1) e i posti di blocco (ball) che *

 rem * appaiono sulla strada. Il giocatore può sparare (missile0) per *

 rem * distruggere le auto nemiche e ottenere punti. Anche le auto *

 rem * nemiche possono sparare (missile1). La velocità aumenta *

 rem * progressivamente. Il gioco termina quando i "danni" subiti, *

 rem * rappresentati da un contatore, raggiungono una soglia. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - Aritmetica a Virgola Fissa (Fixed-Point Math): Il gioco *

 rem * include `fixed_point_math.asm` per utilizzare variabili 8.8. *

 rem * `scroll` (per lo scrolling della strada e nemici) e `mis` *

 rem * (per il proiettile nemico) usano questa tecnica per ottenere *

 rem * un movimento e un'accelerazione fluidi e graduali. *

 rem * - Scrolling Verticale del Playfield: Il comando `pfscroll down`*

 rem * viene usato per creare l'illusione del movimento continuo *

 rem * della strada. *

 rem * - IA con Comportamento Casuale: Le auto nemiche non si *

 rem * limitano a scorrere, ma possono muoversi lateralmente e *

 rem * "sbandare" in modo casuale grazie all'uso del comando `rand`.*

 rem * Anche i posti di blocco appaiono in posizioni casuali. *

 rem * - Gestione Dinamica degli Sprite: Le auto nemiche cambiano *

 rem * aspetto (`CarCreate`) e colore in base al livello di *

 rem * difficoltà. L'auto del giocatore cambia forma quando sterza. *

 rem * - Sistema di "Punti Vita"/Danno: Invece di vite discrete, il *

 rem * gioco usa un contatore di danni (`c`). Ogni collisione *

 rem * incrementa il contatore. Al raggiungimento di una soglia, *

 rem * si attiva la sequenza di Game Over. *

 rem * - Oggetti Multipli e Power-up: Il gioco gestisce 4 oggetti *

 rem * mobili contemporaneamente: l'auto del giocatore (player0), *

 rem * l'auto nemica (player1), il proiettile del giocatore *

 rem * (missile0) e il proiettile nemico (missile1). C'è anche una *

 rem * meccanica di power-up (invincibilità temporanea). *

 rem **

 set romsize 4k

Pagina 189 di 236

init

 rem Include la libreria per la matematica a virgola fissa (8.8).

 include fixed_point_math.asm

 rem --- Sezione Definizioni Variabili (Alias) ---

 rem 'scroll' (m.n) è la variabile 8.8 per la posizione Y dell'auto nemica.

 dim scroll=m.n

 m=0 : n=0

 scroll=1.0

 rem 'mis' (k.j) è la variabile 8.8 per la posizione Y del missile nemico.

 dim mis=k.j

 j=0 : k=0

 mis=1.0

 rem --- Mappa delle Variabili (Commenti originali mantenuti) ---

 rem a: Posizione X dell'auto nemica per calcoli

 rem b: Posizione X del posto di blocco (ball)

 rem c: Contatore dei danni subiti dal giocatore

 rem d: Flag per il movimento laterale dell'auto nemica (0=dritto, 1=dx, 2=sx)

 rem f: Contatore generico

 rem h: Flag per power-up attivo

 rem i: Flag per la schermata titolo

 rem o: Contatore generico

 rem p: Posizione Y del giocatore

 rem q: Timer per il proiettile del giocatore

 rem r: Timer per la pausa (es. game over)

 rem t: Contatore di scrolling (aumenta la difficoltà)

 rem u: Posizione X dell'auto nemica

 rem w: Flag per il colore (power-up)

 rem x: Posizione X del giocatore

 rem y: Contatore per il ciclo dei colori

 rem z: Flag per nemico colpito

 a=0 : b=82 : c=0 : d=0 : f=0 : h=0 : i=0 : o=0

 p=85 : q=0 : r=0 : t=0 : u=94 : W=0 : x=75 : y=16 : z=0

 rem --- Impostazioni Iniziali Oggetti e Colori ---

 missile0x=0:missile0y=0

 missile1x=0:missile1y=0

 COLUP0=0

 COLUP1=208

 COLUPF=160

 COLUBK=0

Pagina 190 di 236

 CTRLPF=$35

 scorecolor=246

 AUDV0=0

 AUDV1=0

 rem --- Stato 0: Schermata Titolo ---

intro

 rem Fa scorrere lo sfondo per un effetto dinamico.

 g=g+1

 if g=2 then pfscroll down :g=0

 rem Cicla i colori per un effetto "attract mode".

 y=y+1

 if y<17 then y=16

 if y>29 then y=16

 rem Disegna i bordi della strada per la schermata titolo.

 pfpixel 7 1 on : pfpixel 25 1 on

 pfpixel 7 2 on : pfpixel 25 2 on

 pfpixel 7 3 on : pfpixel 25 3 on

 pfpixel 7 4 on : pfpixel 25 4 on

 pfpixel 7 5 on : pfpixel 25 5 on

 pfpixel 7 6 on : pfpixel 25 6 on

 pfpixel 7 7 on : pfpixel 25 7 on

 pfpixel 7 8 on : pfpixel 25 8 on

 pfpixel 7 9 on : pfpixel 25 9 on

 drawscreen

 rem Attende l'input del giocatore o il reset per iniziare il gioco.

 if joy0down then i=1 : score=0 : g=0:i=0:goto intro2

 if switchreset then i=1 : score=0 : g=0:i=0:goto intro2

 if joy0fire then i=1: score=0 : g=0:i=0:goto intro2

 goto intro

 rem --- Inizializzazione della Partita ---

intro2

 rem Posiziona le auto per l'inizio.

 player1x=68:player1y=82

 player0x=88:player0y=83

 rem Genera la prima auto nemica.

 gosub MakeNewCar1

 rem Azzera i contatori di gioco.

 g=0

 e=0

Pagina 191 di 236

 missile0x=0:missile0y=0

 rem --- Ciclo di Gioco Principale ---

main

 y=y+1

 if y>250 then y=1

 if c<1 then c=1

 rem Attiva il suono del motore del giocatore se non sta accelerando/frenando.

 if joy0up then goto audskip

 if joy0down then goto audskip

 AUDF0=18:AUDC0=14:AUDV0=10

 rem Aumenta la difficoltà massima dopo un certo tempo.

 if t>240 then t=31

audskip

 rem Resetta i flag quando l'auto nemica esce dallo schermo.

 if scroll > 90 then o=0

 if scroll > 96 then w=0 : h=0

 if scroll > 96 then u=94

 rem --- Logica dello Scrolling Verticale (Virgola Fissa) ---

 rem 'scroll' è la posizione Y dell'auto nemica.

 e=e+1

 if e=2 && t < 10 then e=0:goto skipscroll

 rem Incrementa la posizione verticale. Se esce dallo schermo, la resetta e aumenta la difficoltà

 ('t').

 if scroll < 97 then scroll=scroll+1.0 else scroll=0.0 : t=t+1

 rem Aumenta la velocità di scrolling ai livelli più alti.

 if scroll < 97 && t > 35 then scroll=scroll+0.9 : mis=mis+0.9

skipscroll

 rem Controlla se è necessario creare una nuova auto nemica.

 gosub CarCreate

 rem --- Logica IA e Generazione Ostacoli ---

 v=rand

 rem Ai livelli più alti, l'auto nemica può "sbandare" casualmente.

 if t > 30 then skipmv

 if t < 8 then goto skipmv

 if t > 20 && v < 35 then u=u+1

skipmv

Pagina 192 di 236

 rem Genera casualmente un posto di blocco (ball) in una delle 8 posizioni.

 if v=2 && scroll > 86 then b = 75

 if v=234 && scroll > 86 then b = 105

 if v=112 && scroll > 86 then b = 89

 if v=50 && scroll > 86 then b = 81

 if v=188 && scroll > 86 then b = 115

 if v=166 && scroll > 86 then b = 79

 if v=132 && scroll > 86 then b = 95

 if v=176 && scroll > 86 then b = 111

 rem Fa muovere l'auto nemica lateralmente in modo casuale.

 if v < 10 then u=u+1

 if v > 245 then u=u-2

 rem Cambia il colore dell'auto nemica in base al livello di difficoltà.

 if t>20 && t<36 then COLUP1=104

 if t>35 then COLUP1=68

 rem Se l'auto nemica ha colpito un bordo, la fa muovere nella direzione opposta.

 if d=1 then u=u+1

 if d=2 then u=u-1

skiplr

 rem Se un'auto nemica colpita da un missile esce dallo schermo, resetta il flag 'z'.

 if scroll > 96 then z=0

 rem Se il flag 'z' è 0, l'auto nemica è visibile (NUSIZ1=1).

 if z=0 then NUSIZ1=$01

 rem Aggiorna la posizione dell'auto nemica usando la variabile a virgola fissa.

 player1y=scroll : player1x=u

skiplrm

 rem Seleziona lo sprite del giocatore in base alla sterzata.

 if joy0left then goto TurnCar1

 if joy0right then goto TurnCar2

 player0:

 %01111110

 %01000010

 %00111100

 %10100101

 %11100111

 %10111101

 %00111100

 %10011001

Pagina 193 di 236

 %11111111

 %10011001

end

turned

 rem --- Gestione Grafica e Scrolling ---

 rem Fa scorrere la strada.

 if joy0down then skipscrl

 pfscroll down

skipscrl

 g=g+1

 if g=2 then pfscroll down:g=0

skipsc

 rem Imposta il colore del giocatore, che cambia in base ai danni subiti ('c').

 if c < 11 then COLUP0=128

 if c > 10 && c < 21 then COLUP0=60

 if c > 20 && c < 31 then COLUP0=30

 if c > 30 && c < 41 then COLUP0=64

 if c > 40 && c < 61 then COLUP0=y

 player0x=x : player0y=p

 rem Disegna i bordi della strada usando pfpixel.

 pfpixel 7 1 on : pfpixel 25 1 on

 pfpixel 7 3 on : pfpixel 25 3 on

 pfpixel 7 5 on : pfpixel 25 5 on

 pfpixel 7 7 on : pfpixel 25 7 on

 pfpixel 7 9 on : pfpixel 25 9 on

 drawscreen

 rem Posiziona il posto di blocco (ball).

 ballx=b : bally=scroll+15 : ballheight=2

 rem --- Gestione Input Giocatore (Movimento) ---

 if joy0left then x=x-1

 if joy0right then x=x+1

 rem Accelerare e frenare modifica la velocità di scrolling e il punteggio.

 if joy0up then scroll=scroll+0.3 : mis=mis+0.5 : score=score+10 : AUDF0=12:AUDC0=14:AUDV0=10

 if joy0down && scroll >=1 then scroll=scroll-0.3 : mis=mis-0.5 : score=score-10: AUDF0=24:AUDC0=

14:AUDV0=10

 rem --- Logica dei Proiettili ---

 rem Gestisce il proiettile del giocatore.

 if joy0fire && q<1 then AUDF1=8:AUDC1=1:AUDV1=15 : goto playerfires

Pagina 194 di 236

 if q>0 then q=q-2 : missile0y=q

 if q>50 then AUDV1=0

 rem Gestisce il proiettile dell'auto nemica.

 if scroll >35 && t<10 then goto fireskip

 if scroll >50 && t<36 then goto fireskip

 if scroll >60 && t>35 then goto fireskip

 if h=1 then goto fireskip

 if scroll<=1 then mis=1.0 : AUDF1=13:AUDC1=1:AUDV1=9

 if mis > 18 then AUDV1=0

 missile1y=mis : missile1x=u : missile1height=6

 mis=mis+2.0

 goto pskip

fireskip

 missile1y=0: missile1x=0

pskip

 rem --- Logica delle Collisioni ---

 rem Collisione giocatore-bordo strada.

 if collision(playfield,player0) && x > 75 then x=x-2

 if collision(playfield,player0) && x < 75 then x=x+2

 rem Collisione nemico-bordo strada (cambia la sua direzione).

 if collision(player1,playfield) && u > 100 then d=2

 if collision(player1,playfield) && u < 80 then d=1

 rem Rallenta il giocatore se tocca il bordo.

 if collision(player0,playfield) && scroll >=1 then scroll=scroll-0.5 : mis=mis-0.5

 rem Collisione giocatore-nemico: aumenta i danni. Se troppi, game over.

 if collision(player1,player0) && w=1 then gosub addhitpoints

 if w=1 then goto damageskip

 if collision(player1,player0) then c=c+1 : if c=60 then r=120: goto thisisit

 if collision(player1,player0) && scroll >=1 then scroll=scroll-1.5 : mis=mis-1.5

 rem Collisione missile del giocatore-nemico.

 if collision(player1,missile0) then missile0y=1 : goto carhit

 rem Collisione missile nemico-giocatore.

 if collision(player0,missile1) && x > 75 then c=c+1 : x=x-2 : if c=60 then r=160: goto thisisit

 if collision(player0,missile1) && x < 75 then c=c+1 : x=x+2 : if c=60 then r=160: goto thisisit

damageskip

 rem Collisione giocatore-posto di blocco.

 if collision(player0,ball) && u > 90 then x=x-6

 if collision(player0,ball) && u < 90 then x=x+6

 rem Aumenta il punteggio per il tempo sopravvissuto.

 score=score+20

 goto main

Pagina 195 di 236

 rem --- Sezione delle Subroutine ---

playerfires

 rem Crea il proiettile del giocatore.

 if !switchleftb then missile0x=x+10 else missile0x=x+4

 q=80 : missile0y=75

 missile0height=6

 goto main

thisisit

 rem Prepara la schermata di Game Over.

 AUDV0=0

 goto eog

carhit

 rem Gestisce l'evento di un'auto nemica colpita.

 a=u

 z=1 : score = score + 1000 : missile0y=0 : q=0

 a=u+8

 if o<1 then goto skipblank

 if o>0 then goto blankcar

skipblank

 rem Fa scomparire l'auto nemica e può generare un power-up.

 if missile0x < a then NUSIZ1=0 : o=o+1 : u=u+16

 if missile0x > a then NUSIZ1=0 : o=o+1

199 l=rand:if l>215 then 199

 l=l/8:l=l+1

 if joy0up then goto main

 if l < 10 && scroll > 1 then gosub powerup : w=1

 goto main

eog

 rem Sequenza di animazione e suono per il Game Over.

 if r<1 then r=88:goto eog2

 r=r-1

 gosub explode

 COLUPF=r

 AUDF0=160-r:AUDC0=1:AUDV0=6

 drawscreen

 goto eog

eog2

 rem Loop finale che attende il riavvio del gioco.

 COLUP0=68

 AUDV0=0

 r=r-1

 e=e+1

Pagina 196 di 236

 if e=2 then pfscroll up:e=0

 player0y=r

 player1y=0

 missile0y=0

 missile1y=0

 COLUPF=160

 drawscreen

 if r<1 then pfclear:goto init

 ballx=0:bally=0

 scroll=0

 t=0

 goto eog2

CarCreate

 rem Seleziona casualmente uno dei 5 modelli di auto nemiche da creare.

 if scroll<96 then return

200 l=rand:if l>215 then 200

 l=l/8:l=l+1

 if l>1 && l<6 then gosub MakeNewCar1 : return

 if l>5 && l<11 then gosub MakeNewCar2 : return

 if l>10 && l<16 then gosub MakeNewCar3 : return

 if l>15 && l<21 then gosub MakeNewCar4 : return

 if l>20 && l<28 then gosub MakeNewCar5 : return

 return

 rem --- Subroutine Grafiche ---

MakeNewCar1

 player1:

 %10011001

 %11111111

 %10011001

 %00011000

 %10111101

 %11111111

 %10011001

 %00111100

end

 return

MakeNewCar2

 player1:

 %10111101

 %11111111

 %10111101

 %00100100

Pagina 197 di 236

 %11100111

 %10111101

 %01000010

 %01111110

end

 return

MakeNewCar3

 player1:

 %10011001

 %11111111

 %10011001

 %00011000

 %11011011

 %11111111

 %11011011

 %00100100

end

 return

MakeNewCar4

 player1:

 %10011001

 %11111111

 %10011001

 %00011000

 %00011000

 %10011001

 %11111111

 %10011001

end

 return

MakeNewCar5

 player1:

 %10011001

 %11111111

 %10011001

 %00111100

 %10100101

 %11111111

 %10011001

 %00100100

end

 return

TurnCar1

Pagina 198 di 236

 rem Sprite del giocatore che sterza a sinistra.

 player0:

 %01111110

 %01000010

 %00111100

 %10100101

 %11100111

 %10111101

 %00111100

 %01011001

 %11111111

 %10011010

end

 goto turned

TurnCar2

 rem Sprite del giocatore che sterza a destra.

 player0:

 %01111110

 %01000010

 %00111100

 %10100101

 %11100111

 %10111101

 %00111100

 %10011010

 %11111111

 %01011001

end

 goto turned

powerup

 rem Attiva il power-up e cambia lo sprite nemico in quello del power-up.

 h=1

 missile0y=0: q=0

 player1:

 %11111111

 %10000001

 %10011001

 %10011001

 %10111101

 %10111101

 %10011001

 %10011001

 %10000001

Pagina 199 di 236

 %11111111

end

 return

addhitpoints

 rem Se il power-up è attivo, il giocatore non subisce danni.

 if h=1 then c=c-1

 return

blankcar

 rem Fa scomparire l'auto nemica dopo essere stata colpita.

 u=94

 player1:

 %00000000

end

 goto main

explode

 rem Sprite per l'animazione di esplosione del giocatore.

 COLUPF=70

 COLUP0=64

 player0:

 %01111110

 %01000010

 %00111100

 %10100101

 %11110111

 %00111000

 %10001100

 %10011001

 %01101110

 %00000000

end

 return

 player0:

 %10000001

 %00100100

 %00000000

 %00011001

 %10011000

 %00000000

 %00100100

 %10000001

End

Pagina 200 di 236

Disc Dog

 rem **

 rem * Disc Dog *

 rem * *

 rem * DESCRIZIONE DEL GIOCO: *

 rem * Un gioco ispirato allo sport del "disc dog". Il giocatore *

 rem * controlla un cane (player0) che deve prendere al volo un frisbee*

 rem * (player1) prima che cada a terra. Il gioco è a tempo e si *

 rem * perdono vite se il frisbee non viene preso. *

 rem * *

 rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

 rem * - IA dell'Oggetto: Il frisbee segue una traiettoria complessa *

 rem * e la sua velocità cambia casualmente. *

 rem * - Animazione Dinamica: Lo sprite del cane cambia in base alla *

 rem * direzione del movimento. *

 rem * - Manipolazione del Playfield: Vite e timer sono disegnati *

 rem * manualmente sullo sfondo con `pfpixel`. *

 rem * - Gestione degli Stati: Il codice usa variabili per tracciare *

 rem * lo stato del cane (salto, corsa) e del disco (preso, in volo).*

 rem **

 rem Etichetta di inizio gioco, usata per il riavvio completo.

begin

 rem --- Definizioni Grafiche Iniziali ---

 rem Disegna 3 blocchi per le 3 vite iniziali

 rem Marcatori di bordo per il campo

 rem Linea di terra

 playfield:

 .X.X.X..........................

X

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

end

Pagina 201 di 236

 rem Grafica iniziale del cane (fermo)

 player0:

 %01000100

 %01000100

 %01111100

 %01111100

 %01111100

 %10000111

 %00000111

 %00000100

end

 rem Grafica del frisbee

 player1:

 %01111110

 %00011000

end

 rem --- Impostazioni Iniziali dei Registri ---

 rem Colore del playfield (es. l'erba)

 COLUPF = 176

 rem Colore del punteggio (non usato ma impostato)

 scorecolor = 52

 score = 0

 rem Posizione iniziale del cane

 player0x = 21

 player0y = 80

 rem Posizione iniziale del frisbee

 player1x = 138

 player1y = 65

 rem Posizione iniziale dell'ombra del cane

 missile0x = 82

 missile0y = 79

 missile0height = 5

 rem --- Alias delle Variabili (mappatura su a-z) ---

 rem Stato del salto del cane (0=a terra, 1=sale, 2=scende)

 dim perrosalto = a

 rem Direzione del frisbee (1=da dx a sx, 2=da sx a dx)

 dim discodireccion = b

Pagina 202 di 236

 rem Stato del frisbee (1=in volo, 2=preso dal cane)

 dim discocogido = c

 rem Punteggio (non usato, ma c'è la variabile)

 dim puntos = d

 rem Direzione in cui è rivolto il cane (1=dx, 2=sx)

 dim perrodireccion = e

 rem Velocità orizzontale del frisbee

 dim discovelocidad = f

 rem Variabile temporanea per valori casuali

 dim aleatorio = g

 rem Altezza massima dell'arco del frisbee

 dim discoaltura = h

 rem Contatore delle vite del cane

 dim perrovidas = i

 rem Timer di gioco (conto alla rovescia disegnato su schermo)

 dim cuentaatras = j

 rem Coordinata X in cui il frisbee inizia a scendere

 dim discoalturasube = k

 rem Coordinata X in cui il frisbee inizia a salire

 dim discoalturabaja = l

 rem Timer per rallentare il movimento verticale del frisbee

 dim discoalturapaso = m

 rem --- Inizializzazione delle Variabili di Gioco ---

 puntos = 0

 discocogido = 1

 discodireccion = 1

 perrodireccion = 1

 discovelocidad = 2

 perrovidas = 3

 cuentaatras = 0

 rem Calcola un'altezza casuale per il lancio

 discoaltura = (rand & 10) + 1

 discoalturasube = 18 + discoaltura

 discoalturabaja = 138 - discoaltura

 discoalturapaso = 4

 rem Ciclo di gioco principale.

mainloop

 rem Silenzia il canale audio 0 all'inizio di ogni frame.

 AUDV0 = 0

 rem Colore del cane (player0)

Pagina 203 di 236

 COLUP0 = 4

 rem Colore del frisbee (player1)

 COLUP1 = 132

 rem --- Logica di Game Over ---

 rem Se le vite sono finite, cambia colore e pulisce lo schermo.

 if perrovidas = 0 then COLUPF = 52 : gosub limpiarpantalla

 rem Disegna la scritta "GAME"

 if perrovidas = 0 then gosub game

 rem Disegna la scritta "OVER"

 if perrovidas = 0 then gosub over

 rem Se il gioco è finito e si preme fuoco, riavvia tutto.

 if perrovidas = 0 && joy0fire then goto begin

 rem --- Lettura Input Giocatore ---

 if joy0left && player0x > 21 && perrovidas > 0 then gosub moverizquierda

 if joy0right && player0x < 133 && perrovidas > 0 then gosub moverderecha

 rem Inizia la sequenza di salto

 if joy0up && perrosalto = 0 && perrovidas > 0 then perrosalto = 1

 rem --- Aggiornamento Timer Visivo (disegna una barra che si riempie) ---

 if cuentaatras = 25 then pfpixel 21 1 on : missile0height = 6

 if cuentaatras = 50 then pfpixel 22 1 on

 if cuentaatras = 75 then pfpixel 23 1 on : missile0height = 7

 if cuentaatras = 100 then pfpixel 24 1 on

 if cuentaatras = 125 then pfpixel 25 1 on : missile0height = 8

 if cuentaatras = 150 then pfpixel 26 1 on

 if cuentaatras = 175 then pfpixel 27 1 on : missile0height = 9

 if cuentaatras = 200 then pfpixel 28 1 on

 if cuentaatras = 225 then pfpixel 29 1 on : missile0height = 10

 if cuentaatras = 250 then pfpixel 30 1 on

 rem Se il timer arriva alla fine, il gioco termina.

 if cuentaatras = 250 then perrovidas = 0

 rem --- Logica di Stato del Frisbee ---

 rem Se il cane ha il disco, lo tiene; altrimenti, muovi il disco.

 if discocogido = 2 then gosub cogerdisco else gosub moverdisco

 rem --- Logica del Salto del Cane ---

 rem Se sta saltando (fase di salita)

 if perrosalto = 1 then gosub saltarsubida

 rem Se sta saltando (fase di discesa)

Pagina 204 di 236

 if perrosalto = 2 then gosub saltarbajada

 rem --- Controllo Collisioni ---

 rem Se il cane tocca il frisbee, lo prende.

 if collision(player0,player1) then discocogido = 2

 rem Se il cane con il frisbee raggiunge uno dei bordi, lancia di nuovo.

 if player0x = 21 && collision(playfield,player1) && discocogido = 2 then gosub lanzardisco2

 if player0x = 133 && collision(playfield,player1) && discocogido = 2 then gosub lanzardisco1

 rem Se il cane tocca la sua ombra (missile0), perde una vita (è una meccanica di gioco per aggiu

ngere difficoltà).

 if collision(player0,missile0) then AUDV0 = 15 : AUDC0 = 6 : AUDF0 = 4 : player0x = 21 : perrovi

das = perrovidas - 1

 rem --- Aggiornamento Vite Visive ---

 rem Spegne un blocco-vita se ne rimangono 2.

 if perrovidas = 2 then pfpixel 5 1 off

 rem Spegne un altro blocco-vita se ne rimane 1.

 if perrovidas = 1 then pfpixel 3 1 off

 rem Spegne l'ultimo blocco-vita.

 if perrovidas = 0 then pfpixel 1 1 off

 drawscreen

 goto mainloop

 rem Subroutine per lanciare il frisbee da destra verso sinistra.

lanzardisco1

 rem Pulisce vecchi pixel del playfield

 pfpixel 31 9 off

 pfpixel 0 9 on

 rem Suono di lancio

 AUDV0 = 5 : AUDC0 = 12 : AUDF0 = 4

 rem Imposta lo stato del disco a "in volo".

 discocogido = 1

 player1y = 65

 player1x = 18

 rem Imposta la direzione del disco.

 discodireccion = 2

 rem Calcola una velocità casuale.

 aleatorio = (rand & 3) + 1

 if aleatorio = 4 then discovelocidad = 4

 if aleatorio = 3 then discovelocidad = 2

 if aleatorio = 2 then discovelocidad = 1

Pagina 205 di 236

 if aleatorio = 1 then discovelocidad = 1

 score = score + 100

 puntos = puntos + 100

 cuentaatras = cuentaatras + 1

 rem Calcola una nuova traiettoria casuale.

 discoaltura = (rand & 10) + 1

 discoalturasube = 138 - (discoaltura * 4)

 discoalturabaja = 18 + (discoaltura * 4)

 discoalturapaso = 4

 return

 rem Subroutine per lanciare il frisbee da sinistra verso destra.

lanzardisco2

 rem Pulisce vecchi pixel del playfield

 pfpixel 31 9 on

 pfpixel 0 9 off

 rem Suono di lancio

 AUDV0 = 5 : AUDC0 = 12 : AUDF0 = 4

 discocogido = 1

 player1y = 65

 player1x = 138

 discodireccion = 1

 rem Calcola una velocità casuale.

 aleatorio = (rand & 3) + 1

 if aleatorio = 4 then discovelocidad = 4

 if aleatorio = 3 then discovelocidad = 2

 if aleatorio = 2 then discovelocidad = 1

 if aleatorio = 1 then discovelocidad = 1

 score = score + 100

 puntos = puntos + 100

 cuentaatras = cuentaatras + 1

 rem Calcola una nuova traiettoria casuale.

 discoaltura = (rand & 10) + 1

 discoalturabaja = 18 + (discoaltura * 4)

 discoalturasube = 138 - (discoaltura * 4)

 discoalturapaso = 4

 return

 rem Cambia la grafica del cane per il movimento a sinistra.

moverizquierda

 player0:

 %00100010

 %00100010

Pagina 206 di 236

 %00111110

 %00111110

 %00111111

 %11100000

 %11100000

 %00100000

end

 rem Imposta la direzione del cane.

 perrodireccion = 2

 rem Muove il cane.

 player0x = player0x - 1

 return

 rem Cambia la grafica del cane per il movimento a destra.

moverderecha

 player0:

 %01000100

 %01000100

 %01111100

 %01111100

 %01111100

 %10000111

 %00000111

 %00000100

end

 player0x = player0x + 1

 perrodireccion = 1

 return

 rem Fase di salita del salto.

saltarsubida

 player0y = player0y - 1

 rem Se raggiunge l'apice, passa alla fase di discesa.

 if player0y = 62 then perrosalto = 2

 rem Meccanica di penalità

 if puntos >= 10 && perrosalto = 2 then score = score - 10 : puntos = puntos - 10

 return

 rem Fase di discesa del salto.

saltarbajada

 player0y = player0y + 1

 rem Se tocca terra, fine del salto.

 if player0y = 80 then perrosalto = 0

Pagina 207 di 236

 return

 rem Logica di movimento del frisbee in volo.

moverdisco

 rem Rallenta il movimento verticale

 if discoalturapaso > 1 then discoalturapaso = discoalturapaso - 1

 rem --- Simulazione della traiettoria parabolica del frisbee ---

 if discoalturapaso = 1 && player1x <= discoalturabaja && discovelocidad = 1 && discodireccion =

1 then player1y = player1y + 1 : discoalturapaso = 4

 if discoalturapaso = 1 && player1x >= discoalturasube && discovelocidad = 1 && discodireccion =

1 then player1y = player1y - 1 : discoalturapaso = 4

 if discoalturapaso = 1 && player1x >= discoalturasube && discovelocidad = 1 && discodireccion =

2 then player1y = player1y + 1 : discoalturapaso = 4

 if discoalturapaso = 1 && player1x <= discoalturabaja && discovelocidad = 1 && discodireccion =

2 then player1y = player1y - 1: discoalturapaso = 4

 rem --- Movimento orizzontale e inversione ai bordi ---

 if player1x <= 138 && discodireccion = 1 then player1x = player1x - discovelocidad

 if player1x >= 18 && discodireccion = 2 then player1x = player1x + discovelocidad

 rem Se tocca il bordo, inverte e aggiorna il timer.

 if player1x <= 18 then discodireccion = 2 : cuentaatras = cuentaatras + 1 : player1y = 65

 if player1x >= 138 then discodireccion = 1 : cuentaatras = cuentaatras + 1 : player1y = 65

 AUDV0 = 0

 return

 rem Logica per quando il cane ha preso il frisbee.

cogerdisco

 rem Il frisbee segue il cane.

 if perrodireccion = 1 then player1x = player0x + 6

 if perrodireccion = 2 then player1x = player0x - 6

 player1y = player0y - 5

 return

 rem Pulisce i pixel usati per l'HUD.

limpiarpantalla

 pfpixel 5 1 off

 pfpixel 3 1 off

 pfpixel 1 1 off

 pfpixel 22 1 off

 pfpixel 23 1 off

 pfpixel 24 1 off

 pfpixel 25 1 off

Pagina 208 di 236

 pfpixel 26 1 off

 pfpixel 27 1 off

 pfpixel 28 1 off

 pfpixel 29 1 off

 pfpixel 30 1 off

 pfpixel 31 1 off

 drawscreen

 return

 rem Disegna "GAME" sul playfield.

game

 pfpixel 6 0 on

 pfpixel 7 0 on

 pfpixel 8 0 on

 pfpixel 11 0 on

 pfpixel 12 0 on

 pfpixel 13 0 on

 pfpixel 15 0 on

 pfpixel 19 0 on

 pfpixel 21 0 on

 pfpixel 22 0 on

 pfpixel 23 0 on

 pfpixel 24 0 on

 pfpixel 5 1 on

 pfpixel 10 1 on

 pfpixel 13 1 on

 pfpixel 15 1 on

 pfpixel 16 1 on

 pfpixel 18 1 on

 pfpixel 19 1 on

 pfpixel 21 1 on

 pfpixel 5 2 on

 pfpixel 7 2 on

 pfpixel 8 2 on

 pfpixel 10 2 on

 pfpixel 13 2 on

 pfpixel 15 2 on

 pfpixel 17 2 on

 pfpixel 19 2 on

 pfpixel 21 2 on

 pfpixel 22 2 on

Pagina 209 di 236

 pfpixel 5 3 on

 pfpixel 8 3 on

 pfpixel 10 3 on

 pfpixel 11 3 on

 pfpixel 12 3 on

 pfpixel 13 3 on

 pfpixel 15 3 on

 pfpixel 19 3 on

 pfpixel 21 3 on

 pfpixel 6 4 on

 pfpixel 7 4 on

 pfpixel 10 4 on

 pfpixel 13 4 on

 pfpixel 15 4 on

 pfpixel 19 4 on

 pfpixel 21 4 on

 pfpixel 22 4 on

 pfpixel 23 4 on

 pfpixel 24 4 on

 drawscreen

 return

 rem Disegna "OVER" sul playfield.

over

 pfpixel 6 6 on

 pfpixel 7 6 on

 pfpixel 10 6 on

 pfpixel 14 6 on

 pfpixel 16 6 on

 pfpixel 17 6 on

 pfpixel 18 6 on

 pfpixel 19 6 on

 pfpixel 21 6 on

 pfpixel 22 6 on

 pfpixel 23 6 on

 pfpixel 24 6 on

 pfpixel 5 7 on

 pfpixel 8 7 on

 pfpixel 10 7 on

 pfpixel 14 7 on

Pagina 210 di 236

 pfpixel 16 7 on

 pfpixel 21 7 on

 pfpixel 24 7 on

 pfpixel 5 8 on

 pfpixel 8 8 on

 pfpixel 10 8 on

 pfpixel 14 8 on

 pfpixel 16 8 on

 pfpixel 17 8 on

 pfpixel 21 8 on

 pfpixel 22 8 on

 pfpixel 23 8 on

 pfpixel 5 9 on

 pfpixel 8 9 on

 pfpixel 11 9 on

 pfpixel 13 9 on

 pfpixel 16 9 on

 pfpixel 21 9 on

 pfpixel 23 9 on

 pfpixel 4 10 off

 pfpixel 5 10 off

 pfpixel 8 10 off

 pfpixel 9 10 off

 pfpixel 10 10 off

 pfpixel 11 10 off

 pfpixel 13 10 off

 pfpixel 14 10 off

 pfpixel 15 10 off

 pfpixel 20 10 off

 pfpixel 22 10 off

 pfpixel 23 10 off

 pfpixel 25 10 off

 drawscreen

 return

Pagina 211 di 236

Parte 4: Appendici

Schema tecnico Atari 2600 — circuito e controller, 1983 (George C. Stone & Stuart E. Ross), dominio pubblico.

Pagina 212 di 236

Pagina 213 di 236

Appendice A: I Pilastri del Codice – Sintassi e Operatori

Questa appendice è il tuo “cheat sheet” fondamentale. Contiene le regole d’oro della sintassi e i

concetti base per “parlare” direttamente con la macchina. Quando hai un dubbio su come

strutturare il codice, su cosa sia un $ o su come funzionano gli operatori, questa è la prima pagina

da aprire.

1. Struttura del Codice e Indentazione
La posizione di una riga di codice ne determina la funzione. Un errore di indentazione è la causa

più comune di problemi di compilazione.

Elemento Posizione Esempio

Etichetta (Label) Colonna 0 (nessuno spazio prima) main_loop:

end Colonna 0 (nessuno spazio prima) end

Istruzione/Comando Indentata (almeno uno spazio) player0x = 80

Dati Binari Indentati (almeno uno spazio) %11111111

Commento (rem o ;) Indentato (almeno uno spazio) rem Questo è un commento

Batari Basic è molto pignolo sulla spaziatura. Se il compilatore ti dà un errore “Illegal token”, la

prima cosa da controllare è sempre l’indentazione. Assicurati che le etichette e gli end siano in

colonna 0 e che tutto il resto sia indentato.

2. Binario ed esadecimale
Noi contiamo in base 10, ma i computer “pensano” in modi diversi. Per programmare l’Atari, ne

useremo principalmente due.

• Binario (%): è il linguaggio fondamentale della macchina. Un bit è un singolo

interruttore: 0 (spento) o 1 (acceso). Un byte è un gruppo di 8 bit. Usiamo il prefisso %

per scrivere in binario, specialmente per la grafica. Esempio: %01100110 è un byte con i

bit 1, 2, 5 e 6 accesi. Il bit 0 è quello “più a destra”, il bit 7 è quello “più a sinistra”.

• Esadecimale ($): scrivere lunghi numeri binari è scomodo. Per questo, i programmatori

usano un sistema in base 16. Usa 16 “cifre”: i numeri da 0 a 9, più le lettere da A a F per

rappresentare i valori da 10 a 15. Usiamo il prefisso $ per i numeri esadecimali. È un

modo compatto per scrivere i valori dei registri, specialmente per i colori. Esempio:

COLUBK = $8E

Come si converte un numero esadecimale come $8E?
Un numero esadecimale a due cifre, come $XY, è semplicemente una somma. La prima cifra (X)

va moltiplicata per 16, e la seconda (Y) va sommata al risultato. Ricorda che le lettere

A,B,C,D,E,F corrispondono ai numeri 10,11,12,13,14,15.

Prendiamo $8E: 1. La prima cifra è 8. 2. La seconda cifra è E, che in decimale vale 14. 3. La

formula è: (8 * 16) + 14 = 142.

Quindi, COLUBK = $8E è la stessa cosa di COLUBK = 142

Pagina 214 di 236

Con questo metodo, puoi decifrare velocemente alcuni valori chiave:

$00 = (0 * 16) + 0 = 0 (il valore minimo di un byte).

$FF = (15 * 16) + 15 = 240 + 15 = 255 (il valore massimo di un byte).

Come si “vede” un numero decimale in binario?
Il processo inverso, da decimale a binario, è ancora più utile per la programmazione grafica. Si

tratta di trovare quali potenze del 2, sommate insieme, danno il tuo numero.

Immagina di voler rappresentare il numero 166 in binario. Parti dalla potenza del 2 più alta (128)

e scendi, chiedendoti: “Ci sta?”.

• Il 128 ci sta in 166? Sì. Restano 166 - 128 = 38. → Bit 7 = 1

• Il 64 ci sta in 38? No. → Bit 6 = 0

• Il 32 ci sta in 38? Sì. Restano 38 - 32 = 6. → Bit 5 = 1

• Il 16 ci sta in 6? No. → Bit 4 = 0

• L’8 ci sta in 6? No. → Bit 3 = 0

• Il 4 ci sta in 6? Sì. Restano 6 - 4 = 2. → Bit 2 = 1

• Il 2 ci sta in 2? Sì. Restano 2 - 2 = 0. → Bit 1 = 1

• L’1 ci sta in 0? No. → Bit 0 = 0

Mettendo insieme i bit da 7 a 0, otteniamo: %10100110.

Questa tecnica ti permette di “pensare in binario” e di capire immediatamente quali bit (e quindi

quali pixel in uno sprite) sono accesi o spenti in un dato valore numerico.

3. Operatori Matematici e Logici
Operatore Nome Esempio Descrizione

+ Addizione a = 5 + 3 Somma due numeri.

- Sottrazione a = 5 – 3 Sottrae un numero da un altro.

* Moltiplicazione a = 5 * 3 Moltiplica due numeri.

/ Divisione Intera a = 5 / 2 Divide due numeri e scarta il

resto (il risultato è 2).

() Parentesi a = (5 + 3) * 2 Forza l’ordine delle operazioni.

Le espressioni tra parentesi

vengono calcolate per prime.

&& AND Logico (E) if a > 0 && b > 0 Restituisce “vero” solo se

entrambe le condizioni sono

vere.

|| OR Logico

(OPPURE)

if a > 0 || b > 0 Restituisce “vero” se almeno

una delle condizioni è vera.

! NOT Logico

(NON)

if !joy0fire Inverte il valore di una

condizione (vero diventa falso,

falso diventa vero).

Pagina 215 di 236

4. Operatori Bitwise
Questi operatori ti permettono di manipolare i singoli bit all’interno di un byte. Sono strumenti

avanzati per ottimizzazioni estreme.

Operatore Nome Esempio Descrizione

& AND Bitwise a = a & %00001111 Mantiene solo i bit che sono 1 in

entrambi i valori (“maschera”).

| OR Bitwise a = a | %00000001 “Accende” un bit (lo imposta a

1) senza modificare gli altri.

^ XOR Bitwise a = a ^ %00000001 Inverte lo stato di un bit (da 0 a

1 o viceversa, “flip”).

<< Shift a Sinistra a = a << 1 Sposta tutti i bit a sinistra.

Equivale a moltiplicare per 2.

Molto veloce!

Se ad esempio vuoi moltiplicare

per 5 (4+1) velocemente, puoi

fare:

a = (a << 2) + a

>> Shift a Destra a = a >> 1 Sposta tutti i bit a destra.

Equivale a dividere per 2. Molto

veloce!

Pagina 216 di 236

Appendice B: Il Cruscotto dell’Atari – Guida ai Registri e alle Variabili Speciali

Questa appendice è il tuo manuale tecnico per “parlare” direttamente con l’hardware dell’Atari

2600. Conoscerli ti darà il pieno controllo.

1. Gerarchia di Visibilità degli Oggetti (Ordine di Disegno)
Sull’Atari 2600, gli oggetti vengono disegnati su strati fissi, come fogli di acetato trasparenti

impilati uno sull’altro. L’ordine di base, dal più lontano al più vicino, è:

Sfondo (COLUBK) → Playfield (playfield) / Palla (ball) → Player 1 / Missile 1 → Player 0 /

Missile 0

Questo significa che, di default, player0 apparirà sempre sopra a player1. Questo ordine può

essere alterato con il registro CTRLPF.

2. Tabella Completa dei Registri e Variabili Speciali
Questa tabella è il tuo riferimento rapido per le parole chiave che controllano la grafica e l’audio.

Ricordati che volatile significa che dopo un drawscreen il suo valore è azzerato e che quindi

dobbiamo ripristinarlo ad ogni frame (nel main_loop).

Nome

Registro/Variabile

Scopo Breve Capitolo Volatile? Note / Valori Comuni

Colori (Registri

TIA)

COLUBK Colore di Sfondo 2 No $00 (nero) - $FE

(bianco). Valori

esadecimali.

COLUPF Colore Playfield e Palla 4 Sì Valori esadecimali. Va

reimpostato ad ogni

frame.

COLUP0 Colore Player 0 e Missile 0 2 Sì Valori esadecimali. Va

reimpostato ad ogni

frame.

COLUP1 Colore Player 1 e Missile 1 7 Sì Valori esadecimali. Va

reimpostato ad ogni

frame.

Posizioni

(Registri TIA)

player0x,

player0y

Posizione Sprite Player 0 2 No x: 0-159 (circa), y: 0-95

(circa).

player1x,

player1y

Posizione Sprite Player 1 7 No x: 0-159 (circa), y: 0-95

(circa).

missile0x,

missile0y

Posizione Missile 0 8 No x: 0-159 (circa), y: 0-95

(circa).

missile1x,

missile1y

Posizione Missile 1 8 No x: 0-159 (circa), y: 0-95

(circa).

Pagina 217 di 236

Nome

Registro/Variabile

Scopo Breve Capitolo Volatile? Note / Valori Comuni

ballx, bally Posizione Palla 7 No x: 0-159 (circa), y: 0-95

(circa).

Controllo

Grafico (Registri

TIA)

REFP0, REFP1 Riflessione Orizzontale

Sprite

3 Sì 0 (normale), 8

(specchiato).

NUSIZ0, NUSIZ1 Dimensione/Copie

Sprite/Missili

8 Sì Sintassi $MP. M

(missile): 0-3 (1-8px). P

(player): 5 (doppio), 7

(quadruplo).

CTRLPF Controllo Palla e Priorità 4, 8 No Somma di valori: bit

2=4 (priorità), bit 4-5

(16, 32, 48) per

larghezza palla.

missile0height,

missile1height

Altezza Missili (in pixel) 8 No Valori 1-8. 1 è usato per

oggetti orizzontali.

ballheight Altezza Palla (in pixel) 8 No Valori 1-8.

Input

Joystick 0

(Comandi

RIOT)

joy0fire Lettura pulsante fuoco

Giocatore 1

3 N/A Restituisce vero/falso in

un if.

joy0up Lettura direzione SU

Giocatore 1

3 N/A Restituisce vero/falso in

un if.

joy0down Lettura direzione GIÙ

Giocatore 1

3 N/A Restituisce vero/falso in

un if.

joy0left Lettura direzione

SINISTRA Giocatore 1

3 N/A Restituisce vero/falso in

un if.

joy0right Lettura direzione DESTRA

Giocatore 1

3 N/A Restituisce vero/falso in

un if.

Input

Joystick 1

(Comandi

RIOT)

joy1fire Lettura pulsante fuoco

Giocatore 2

3 N/A Restituisce vero/falso in

un if.

joy1up Lettura direzione SU

Giocatore 2

3 N/A Restituisce vero/falso in

un if.

joy1down Lettura direzione GIÙ

Giocatore 2

3 N/A Restituisce vero/falso in

un if.

joy1left Lettura direzione

SINISTRA Giocatore 2

3 N/A Restituisce vero/falso in

un if.

Pagina 218 di 236

Nome

Registro/Variabile

Scopo Breve Capitolo Volatile? Note / Valori Comuni

joy1right Lettura direzione DESTRA

Giocatore 2

3 N/A Restituisce vero/falso in

un if.

Input

Interruttori

Console

(Comandi

RIOT)

switchreset Lettura interruttore GAME

RESET

3 N/A Restituisce vero se

premuto.

Switchselect Lettura interruttore GAME

SELECT

3 N/A Restituisce vero se

premuto.

Switchbw Lettura interruttore

COLOR/B&W

3 N/A Restituisce vero se in

posizione B&W.

Switchleftb Lettura interruttore DIFF.

SINISTRO

3 N/A Restituisce vero se in

posizione B (beginner).

switchrightb Lettura interruttore DIFF.

DESTRO

3 N/A Restituisce vero se in

posizione B (beginner).

Audio (Registri

TIA)

AUDV0, AUDV1 Volume Canali 0 e 1 5 No 0 (silenzio) - 15

(massimo).

AUDC0, AUDC1 Timbro (tipo di suono) 5 No 0-15. Vedi Appendice

D per la tabella.

AUDF0, AUDF1 Frequenza (intonazione) 5 No 0 (acuto) - 31 (grave).

HUD (Punteggio

- Variabili

Speciali)

score Variabile punteggio a 6

cifre

14 No Formato BCD da 0 a

999999.

scorecolor Colore del testo dello score 14 No Valori esadecimali.

const noscore = 1 Nasconde lo score 14 N/A Costante da definire a

inizio codice.

const scorefade =

1

Attiva effetto sfumato 14 N/A Costante da definire a

inizio codice.

set pfscore on Attiva le barre di stato 14 N/A Direttiva da inserire a

inizio codice.

pfscorecolor Colore delle barre di stato 14 No Valori esadecimali.

pfscore1, pfscore2 Dati binari per le barre 14 No Valori in binario (es.

%11110000).

Nota: N/A = non attinente

Pagina 219 di 236

3. Moltiplicare gli Oggetti: Trucchi con NUSIZ e CTRLPF
Hai imparato a disegnare e muovere i tuoi cinque oggetti grafici. Ma se osservi i giochi classici,

vedrai cose che sembrano impossibili: racchette da tennis larghe, proiettili che sono più spessi di

un normale missile, o addirittura più copie dello stesso giocatore sullo schermo. Come è

possibile?

La risposta non sta nel creare nuovi oggetti, ma nell’alterare quelli esistenti usando due dei

registri di controllo più potenti del TIA: NUSIZ e CTRLPF. In questa appendice, impareremo a

moltiplicare, allargare e allungare i nostri attori digitali.

I registri NUSIZ0 (per player0/missile0) e NUSIZ1 (per player1/missile1) sono speciali. Ognuno

è un singolo byte, ma il TIA lo interpreta come due metà separate (due “nybble” da 4 bit) che

controllano due cose diverse:

• I bit “a destra”: Controllano il Player (player0 o player1).

• I bit “a sinistra”: Controllano il Missile (missile0 o missile1).

Per impostarli, usiamo un singolo numero esadecimale $MP, dove M è il valore per il Missile e P

è il valore per il Player.

Controllare i Missili (la parte M)

La parte M del registro controlla semplicemente la larghezza del missile.

Valore di M Impostazione Larghezza Missile

0 NUSIZx = $0_ 1 pixel (default)

1 NUSIZx = $1_ 2 pixel

2 NUSIZx = $2_ 4 pixel

3 NUSIZx = $3_ 8 pixel

Questo è il trucco che abbiamo usato per creare la “spada” orizzontale! Con NUSIZ0 = $30,

abbiamo impostato la larghezza di missile0 a 8 pixel.

Controllare i Player (la parte P)

La parte P è molto più interessante. Permette di moltiplicare o allargare lo sprite del giocatore.

Valore di P Impostazione Effetto sul Player

0 NUSIZx = $_0 1 copia, larghezza normale (default)

1 NUSIZx = $_1 2 copie, vicine

2 NUSIZx = $_2 2 copie, a media distanza

3 NUSIZx = $_3 3 copie, vicine

4 NUSIZx = $_4 2 copie, a lunga distanza

5 NUSIZx = $_5 Doppia larghezza (x2)

6 NUSIZx = $_6 3 copie, a media distanza

7 NUSIZx = $_7 Quadrupla larghezza (x4)

Pagina 220 di 236

Ricorda, NUSIZ0 e NUSIZ1 sono volatili! Devono essere reimpostati ad ogni frame nel

main_loop se vuoi che il loro effetto sia persistente. Quando imposti un valore, ad esempio

NUSIZ0 = $35, stai impostando contemporaneamente la larghezza del missile (M=3) e l’effetto

sul player (P=5).

E per la ball? Non ha un registro NUSIZ dedicato. La sua larghezza è controllata da due bit

all’interno del registro CTRLPF, lo stesso che usiamo per la priorità.

A differenza di NUSIZ, CTRLPF non è volatile. Di solito lo si imposta una volta all’inizio del

gioco.

Valore per CTRLPF Larghezza Palla

0 1 pixel (default)

16 2 pixel

32 4 pixel

48 8 pixel

Poiché CTRLPF controlla più cose, i suoi valori vanno combinati. Se vuoi una palla larga 4 pixel

(32) e vuoi che il Playfield abbia la priorità sugli sprite (4), imposterai CTRLPF alla loro somma:

CTRLPF = 32 + 4 ; Risultato: 36

Padroneggiare NUSIZ e CTRLPF ti permette di superare i limiti grafici apparenti della console.

Puoi creare sprite imponenti, effetti visivi interessanti e oggetti che si adattano meglio alle

necessità del tuo gioco, trasformando i 5 oggetti base in un arsenale grafico molto più versatile.

Pagina 221 di 236

Appendice C: Ricette di Codice Avanzate

Questa appendice contiene “ricette” di codice complete e funzionanti per alcune delle tecniche di

programmazione più potenti e utili.

1. Il Centralino Veloce: on...gosub e on...goto
Hai una macchina a stati con molti stati diversi (es. diversi tipi di nemici) e una lunga catena di if

sta rallentando il tuo main loop?

La soluzione è usare le istruzioni on...gosub o on...goto per creare un “centralino” velocissimo

che smista l’esecuzione alla subroutine o all’etichetta corretta in base al valore di una variabile.

2. on...gosub
Questa versione è ideale quando ogni blocco di codice deve terminare con un return per tornare

al punto di chiamata. Attenzione: dopo on segue solo una variabile, non puoi usare espressioni

come “x+1” o “x+y”.

 dim enemy_type = a ; 0=Goomba, 1=Koopa, 2=Beetle

main_loop

 ; ... logica del gioco ...

 on enemy_type gosub goomba_ai, koopa_ai, beetle_ai ; in base al valore di enemy_type il program

ma va ad una subroutine diversa

 ; ... resto del main_loop ...

 drawscreen

 goto main_loop

goomba_ai ; arrivo qui se enemy_type è 0

 COLUBK = $D8 : return

koopa_ai ; arrivo qui se enemy_type è 1

 COLUBK = $9E : return

beetle_ai ; arrivo qui se enemy_type è 2

 COLUBK = $88 : return

3. on...goto
Questa versione è utile quando ogni blocco di codice deve poi proseguire verso una parte

comune del programma, usando goto invece di return.

 dim enemy_type = a ; 0=Goomba, 1=Koopa, 2=Beetle

main_loop

 ; ... logica del gioco ...

 rem --- Centralino IA ---

 on enemy_type goto goomba_ai, koopa_ai, beetle_ai

continue_logic

 ; ... logica comune che prosegue dopo la scelta del nemico ...

 drawscreen

 goto main_loop

goomba_ai

 COLUBK = $D8 : goto continue_logic

koopa_ai

 COLUBK = $9E : goto continue_logic

beetle_ai

 COLUBK = $88 : goto continue_logic

Pagina 222 di 236

4. Gestione dei numeri casuali
Il comando rand produce una sequenza di numeri che, se non diversamente specificato, è sempre

la stessa a ogni avvio del gioco. Una possibile soluzione è usare il tempo che il giocatore passa

nella schermata del titolo come “seme” (seed) per il generatore di numeri casuali. Infatti per

“cambiare” la generazione della sequenza di numeri casuali basta assegnare a rand un numero

diverso ogni volta.

 dim randseed = k

 dim gamestate = f ; 1=Titolo, 2=Gioco

 gamestate = 1

main_loop

 if gamestate = 1 then gosub state_title

 if gamestate = 2 then gosub state_gameplay

 drawscreen

 goto main_loop

state_title

 ; ...logica della schermata del titolo...

 rem Il contatore 'randseed' aumenta finché siamo nel titolo

 randseed = randseed + 1

 if !joy0fire then goto state_title

 rem Usa il contatore come seme. Per forzare il seme, si scrive rand = seme

 if randseed = 0 then rand = 1 ; Il seme 0 non è valido, quindi usiamo 1 in questo caso.

 if randseed <> 0 then rand = randseed

 gamestate = 2

 return

state_gameplay

 ; ...logica di inizializzazione del gioco...

 player0x = rand ; Questa posizione sarà diversa a ogni partita!

 ; ...

randseed è un contatore che aumenta finchè il giocatore non preme fuoco e poiché questo

momento è “casuale”, lo sarà anche randseed il cui valore viene poi assegnato a rand che da lì in

poi genererà un sequenza casuale diversa.

5. Range casuali
Per generare numeri casuali all’interno di un intervallo specifico, la chiave è l’operatore bitwise

& (AND). È una tecnica estremamente veloce ed efficiente.

Codice Range del Risultato

a = (rand & 1) 0 o 1

a = (rand & 3) da 0 a 3

a = (rand & 7) da 0 a 7

a = (rand & 15) da 0 a 15

a = (rand & 31) da 0 a 31

a = (rand & 63) da 0 a 63

a = (rand & 127) da 0 a 127

Per ottenere un range che parte da 1, basta aggiungere 1 al risultato (es. a = (rand & 3) + 1 per

un range da 1 a 4).

Pagina 223 di 236

6. Posizionamento Casuale e Intelligente degli Sprite
Invece di generare un numero e poi controllarlo con un if, possiamo usare la tecnica dei range

per generare direttamente un numero nell’intervallo desiderato.

Esempio: Posizionare un nemico tra le coordinate X=21 e X=131

1. Offset di Partenza: Il nostro numero minimo è 21.

2. Ampiezza del Range: 131 - 21 = 110. Dobbiamo generare un numero casuale da 0 a 110.

3. Scomposizione in Potenze di 2: 110 è 64 + 32 + 8 + 4 + 2. Per mascherare i bit

corrispondenti, useremo i valori 63 (per i primi 6 bit), 31 (5 bit), 15 (4 bit) e 1 (1 bit). La

combinazione più efficiente è scomporre 110 come 63 + 31 + 15 + 1.

4. Costruzione della Formula:

player1x = (rand & 63) + (rand & 31) + (rand & 15) + (rand & 1) + 21

7. Generare -1 o +1 Casualmente
Per decidere casualmente una direzione (positiva o negativa), si può usare un trucco con il

complemento a due.

 rem Genera un valore casuale che sarà -1 oppure +1

 a = 255 + (rand & 2)

1. (rand & 2) può dare solo 0 o 2.

2. Se il risultato è 0: a = 255 + 0 → a = 255 (che per la CPU equivale a -1).

3. Se il risultato è 2: a = 255 + 2 → a = 257. A causa dell’overflow (superamento del limite

255), il risultato diventa 1.

Questa tecnica è perfetta per invertire casualmente una velocità: velocita_x = velocita_x * a

8. Le Variabili temp: La Memoria “Usa e Getta”
A volte, all’interno di una singola subroutine, hai bisogno di una variabile “di servizio” solo per

un breve calcolo, ma hai già usato tutte le lettere a-z per dati importanti del gioco.

In tal caso puoi usare le variabili temporanee. Batari Basic mette a disposizione 6 variabili

speciali chiamate temp1, temp2, temp3, temp4, temp5 e temp6.

Le variabili temp sono estremamente volatili. Il loro contenuto viene cancellato dopo ogni

drawscreen e può essere sovrascritto da molti comandi interni di Batari Basic (specialmente

calcoli complessi). Usa le variabili temp solo per calcoli molto brevi all’interno di una singola

subroutine e non fare mai affidamento sul fatto che il loro valore si mantenga tra un ciclo e

l’altro del main_loop. Esiste anche una variabile temp7, ma è riservata al meccanismo di

bankswitching. Non usarla mai!

9.Gli Array data: Archivi di Informazioni nella ROM
A volte hai bisogno di conservare una lista di valori che non cambiano mai, come le posizioni di

partenza dei nemici, una sequenza di colori o i dati di un livello.

Pagina 224 di 236

In questo caso puoi usare un array data. Un array data è una tabella memorizzata nella ROM

(memoria di sola lettura) da cui puoi leggere qualsiasi elemento in qualsiasi momento, usando la

sua posizione (indice). Per creare un array data, si usa una sintassi a blocco:

data <nome_array> ... end

Per leggere un valore, si usa la sintassi

<nome_array>[indice]

 dove l’indice parte da 0.

Questo esempio crea una tabella di 7 colori e la usa per far ciclare il colore dello sfondo ogni

volta che si preme il pulsante di fuoco.

 rem Ciclo Colori con Array data

 set romsize 2k

 set smartbranching on

 dim color_index = a

main_loop

 if joy0fire then color_index = color_index + 1

 rem Se l'indice supera la dimensione dell'array, lo azzera

 if color_index > 6 then color_index = 0

 rem Leggi il colore dall'array e assegnalo allo sfondo

 COLUBK = palette_colors[color_index]

 drawscreen

 goto main_loop

 rem --- Definisci la tua tavolozza di colori in un array data ---

 data palette_colors

 $1E, $48, $86, $9C, $D4, $EA, $34

end

Ad ogni pressione del fuoco, color_index viene incrementato. Il nuovo valore dell’indice viene

usato per “pescare” un colore dall’array palette_colors, che viene poi assegnato a COLUBK.

Essendo memorizzati in ROM, non puoi modificare i valori di un array data durante il gioco (es.

palette_colors[0] = $FF non funzionerà). Inoltre un singolo array data non può contenere più di

256 valori. Infine, se cerchi di leggere un indice che non esiste (es. palette_colors[10]), il

programma non darà errore, ma leggerà “spazzatura” dalla memoria, con risultati imprevedibili.

Pagina 225 di 236

10. Le “Comb Lines” e la Maschera Nera
A volte possono apparire delle sottili linee nere frastagliate a sinistra: le “Comb Lines”. La CPU

è troppo impegnata a riposizionare gli sprite e “perde la corsa contro il raggio” per un istante.

Una possibile soluzione è disegnare una colonna verticale nera sopra di esse usando il registro

PF0 per nasconderle, i cui primi 4 bit permettono di riempire le 4 colonne più a sinistra dello

schermo.

main_loop

 COLUBK = $1E ; Sfondo giallo

 COLUPF = $00 ; Playfield nero

 PF0 = %11110000 ; riempi le 4 colonne a sinistra

 ; ... logica del gioco ...

 drawscreen

 goto main_loop

Attenzione: se usi PF0 con un playfield multicolore (pfcolors), il pixel più in basso della barra

PF0 potrebbe assumere il colore sbagliato. Per risolvere, se il tuo playfield ha 11 righe, definisci

12 colori nel blocco pfcolors:, assicurandoti che il dodicesimo colore sia identico

all’undicesimo.

Un esempio di comb lines

11. Eliminare le Linee Nere del Playfield con no_blank_lines
Per ottenere uno sfondo solido e continuo, puoi eliminare le linee di separazione tra le righe del

Playfield usando un’opzione speciale del kernel.

set kernel_options no_blank_lines

Attenzione: perdi completamente l’uso di missile0. Questa opzione è compatibile con poche

altre opzioni del kernel. Inoltre, se usi no_blank_lines insieme a pfcolors, noterai che ogni riga

del Playfield avrà una sottile “glassa” in cima, colorata con il colore della riga precedente. Puoi

sfruttare questo problema a tuo vantaggio per creare sfondi dall’aspetto quasi ad “alta

risoluzione”, con linee sottili per disegnare griglie o altri dettagli.

12. Aritmetica BCD e score
La variabile score è speciale: usa un formato numerico chiamato BCD (Binary-Coded Decimal).

Batari Basic offre un comando apposito per l'aritmetica BCD: dec.

Pagina 226 di 236

Usa dec per aggiungere o sottrarre valori allo score. I numeri che aggiungi devono però essere in

formato esadecimale, ma "pensati" come decimali, e non possono superare $99. Ad esempio, per

aggiungere 15 punti, bisogna scrivere:

 dec score = score + $15

Usando dec puoi anche sommare il contenuto di una variabile, scrivendone anche per essa i

valori in esadecimale:

 p = $15

 dec score = score + p

score è internamente composto da tre byte di memoria: sc1, sc2 e sc3, che possono rappresentare

ognuno un numero da 0 a 99.

Quando sc3 supera $99 ritorna a $00 e viene incrementato sc2. Quando sc2 supera $99 ritorna a

$00 e viene incrementato sc1. Quando sc1, sc2, sc3 vanno sotto zero, diventano $99!

Ognuno di questi byte contiene due cifre decimali in formato BCD (Binary-Coded Decimal),

ovvero ogni cifra da 0 a 9 è codificata in 4 bit:

 sc1: Cifra delle Centinaia di Migliaia + Cifra Decine di Migliaia

 sc2: Cifra delle Migliaia + Cifra delle Centinaia

 sc3: Cifra delle Decine + Cifra delle Unità

Si può agire separatamente su sc1, sc2, sc3 con questo codice:

 dim _sc1 = score ; Crea Alias per il byte più significativo dello score.

 dim _sc2 = score+1; Crea Alias per il byte centrale.

 dim _sc3 = score+2; Crea Alias per il byte meno significativo.

Essendo normali variabili byte, possiamo poi usare if per controllare un certo stato del punteggio.

Ad esempio:

 if _sc1 = $00 && _sc2 = $00 && _sc3 < $10 then ... ; il punteggio è minore di 10

 if _sc1 = $99 && _sc2 = $99 && _sc3 <= $99 then ... ; il punteggio è andato sotto 0

Pagina 227 di 236

Appendice D: La Sala del Compositore – Guida ai Suoni e alle Note

Benvenuto nella sala del compositore! In questa sezione troverai tutto ciò che ti serve per dare

una voce ai tuoi giochi. L’Atari 2600 ha un sistema sonoro semplice ma sorprendentemente

versatile, capace di creare dai beep iconici di Space Invaders ai complessi rombi di motore di

River Raid.

1.I Registri del Suono (le Manopole del Sintetizzatore)
Il chip TIA ha due canali audio indipendenti (Canale 0 e Canale 1). Per ogni canale, devi

regolare tre “manopole” (registri) per produrre un suono. Tutti i registri audio sono persistenti:

una volta impostati, continueranno a produrre suono finché non li modificherai o non azzererai il

volume.

Registro Scopo Range

Valori

Note

AUDV0 /

AUDV1

Volume 0 - 15 Controlla la potenza del suono. 0 è silenzio, 15 è il

volume massimo. È l’unico modo per spegnere un

suono.

AUDC0 /

AUDC1

Timbro 0 - 15 Controlla la “voce” o la “texture” del suono. Ogni

valore seleziona un tipo di suono diverso.

AUDF0 /

AUDF1

Frequenza 0 - 31 Controlla l’intonazione (la nota). Attenzione: valori

bassi = suoni acuti; valori alti = suoni gravi.

2.La Scelta dello Strumento (il Registro AUDC)
Il registro AUDC è il cuore creativo del suono Atari. Ogni valore seleziona un “timbro” o

“strumento” diverso. Scegliere lo strumento giusto è il primo passo per comporre la tua melodia

o il tuo effetto sonoro.

Timbro

(AUDC)

Strumento / Descrizione Uso Tipico

4, 5, 12, 13 Tono Puro (Flauto): Pulito e rotondo. I

valori 12 e 13 raggiungono note più

gravi.

Melodie, suoni di raccolta oggetti,

effetti positivi. Il più musicale tra i

timbri.

6, 10 Tono Intermedio: Un suono a metà tra il

puro e il ronzante.

Suoni di avviso, allarmi non troppo

aggressivi .

7, 9 Tono “Ancia”: Aspro, brillante e

penetrante.

Motori, allarmi acuti, suoni aggressivi.

1 Tono “Buzzy”: Ronzante, distorto e

molto elettronico.

Laser, spari, suoni stridenti e

fantascientifici.

3 Tono “UFO”: Fluttuante, modulato,

quasi un lamento.

Sirene, effetti speciali, suoni alieni.

2, 14, 15 Rombi e Distorsioni: Suoni complessi

con bassi profondi che si trasformano in

rombi.

Motori potenti, suoni cupi, impatti

pesanti.

8 Rumore Bianco: Un fruscio puro, simile

al suono di una TV non sintonizzata.

Esplosioni, spari, vento, onde del

mare.

0, 11 Silenzio -

Pagina 228 di 236

3.La Partitura: Tavola Completa delle Note (il Registro AUDF)
Il registro AUDF controlla l’intonazione. Ricorda sempre la regola d’oro: più basso è il valore,

più acuta è la nota. A causa del modo in cui l’hardware genera i suoni, non tutte le note sono

perfettamente intonate. La tabella seguente elenca le note più “pure” e utilizzabili per ogni

strumento, coprendo quasi 5 ottave.

Come leggere la tabella: Cerca la nota desiderata. La colonna “Valore AUDF” ti dà il numero

da usare. La colonna “Strumenti Migliori” indica con quali timbri (AUDC) quella nota suona più

intonata.

Ottava Nota Valore AUDF Strumenti Migliori (AUDC)

Ottava 1 (la più alta) Do 3 1

 Do# 0, 1 1, 2, 3

 Fa 2 1, 2, 3

Ottava 2 Do 7, 15 1, 7, 9

 Do# 6, 14 1, 6, 10

 Re 13 1, 6, 10

 Mi 11, 12 2, 3, 6, 10, 12, 13

 Fa 11, 29 1, 12, 13

 Fa# 10 3, 6, 10

 Sol 9, 19, 20 3, 7, 9

 Sol# 9, 19 1, 3, 4, 5, 6, 10

 La 8, 18 4, 5

 La# 8, 17 1, 2, 3, 4, 5, 12, 13

 Si 16 1, 2, 3, 4, 5, 12, 13

Ottava 3 (centrale) Do 29 4, 5, 12, 13

 Do# 28 6, 10

 Re 27 2, 3, 6, 10

 Re# 26 12, 13

 Mi 25 2, 3

 Fa 23, 29 12, 13

 Fa# 22 2, 3, 12, 13

 Sol 21 6, 10, 12, 13

 Sol# 20, 24 12, 13

 La 18 4, 5, 6, 10, 12, 13

 La# 17, 22 12, 13

 Si 16, 21, 30 12, 13

Ottava 4 (bassa) Do 29 12, 13

 Re 27 12, 13

 Mi 25, 31 12, 13

 Fa 23, 29 12, 13

 Fa# 22, 27 12, 13

 Sol 20, 26 12, 13

 Sol# 19, 24 12, 13

 La 18, 23 12, 13

 La# 17, 22 12, 13

Pagina 229 di 236

Ottava Nota Valore AUDF Strumenti Migliori (AUDC)

 Si 16, 21, 30, 31 12, 13

Ottava 5 (la più grave) Do 29 12, 13

 Re 27 12, 13

 Mi 31 12, 13

 Fa 29 12, 13

 Sol 26 12, 13

Come puoi vedere, le note non sono distribuite in modo uniforme. A volte, la stessa nota si

ottiene con valori AUDF diversi, e alcune note semplicemente non esistono per certi timbri.

Comporre per l’Atari 2600 è come suonare un vecchio organo: bisogna conoscere lo strumento e

adattare la melodia alle sue peculiarità, scegliendo le note e i timbri che funzionano meglio

insieme.

4.Il Motore Musicale: Creare Melodie con sdata
I “Sound Timer” sono perfetti per effetti sonori brevi, ma come si fa a creare una colonna sonora

complessa? La soluzione è costruire un motore musicale, una piccola macchina software che

legge una “partitura” dalla memoria e la suona.

Le normali tabelle data sono come array e sono limitate a circa 256 byte. Per una canzone, non

bastano.

sdata (Sequential Data) crea un flusso di dati che può essere letto solo in sequenza, uno dopo

l’altro, come leggere le parole di un libro. Questo permette di creare tabelle di dati grandi quanto

l’intera memoria ROM. Ecco come funziona:

sdata music_data = x

sdata: Dichiara l’inizio di una tabella di dati sequenziali.

music_data: È il nome che diamo alla nostra “playlist”.

= x: Questo è il pezzo cruciale. Stiamo dicendo a Batari Basic di usare la variabile x come

puntatore (si può usare qualsiasi variabile a..z)

 y = sread(music_data)

sread: È il comando per leggere il prossimo dato dalla tabella.

Ogni volta che chiami sread(), lui legge il valore a cui punta x, lo assegna a y, e poi incrementa

automaticamente x, spostando il puntatore al valore successivo della tabella di valori, pronto

per la prossima lettura.

Nell’esempio che segue la subroutine music_setup serve a riposizionare questo “segnalibro”

all’inizio del “libro” ogni volta che la canzone finisce.

Attenzione: i dati di sdata si possono solo leggere in sequenza a differenza dell’array data da cui

puoi leggere qualsiasi elemento in qualsiasi momento, usando la sua posizione (indice).

 rem Motore Musicale con sdata

 set romsize 2k

 dim music_note_duration = a

 dim mus1 = b

 dim mus2 = c

Pagina 230 di 236

 dim mus3 = d

 rem --- Inizializzazione ---

 gosub music_setup

main_loop

 gosub music_play

 drawscreen

 goto main_loop

music_play

 music_note_duration = music_note_duration - 1

 if music_note_duration > 0 then return ; Se la nota non è finita, esci

 rem --- La nota e' finita, leggi la prossima dalla tabella ---

 rem Formato dati: Volume, Timbro, Frequenza, Durata

 mus1 = sread(music_data) ; Leggi il Volume

 rem Se il volume è 255, la canzone è finita. Riavvolgi.

 if mus1 = 255 then gosub music_setup : return

 mus2 = sread(music_data) ; Leggi il Timbro

 mus3 = sread(music_data) ; Leggi la Frequenza

 music_note_duration = sread(music_data) ; Leggi la Durata

 rem Imposta i registri audio per suonare la nuova nota

 AUDV0 = mus1

 AUDC0 = mus2

 AUDF0 = mus3

 return

music_setup

 rem --- TABELLA DATI MUSICALE ---

 rem Scegli la variabile x come puntatore alla tabella musicale

 rem Vol, Timbro, Freq, Durata

 sdata music_data = x

 12, 4, 28, 15 ; Do

 12, 4, 25, 15 ; Re

 12, 4, 22, 15 ; Mi

 12, 4, 28, 30 ; Do (lunga)

 0, 0, 0, 15 ; Pausa

 12, 4, 28, 15 ; Do

 12, 4, 25, 15 ; Re

 12, 4, 22, 15 ; Mi

 12, 4, 28, 30 ; Do (lunga)

 0, 0, 0, 15 ; Pausa

 12, 4, 22, 15 ; Mi

 12, 4, 21, 15 ; Fa

 12, 4, 18, 30 ; Sol (lunga)

 0, 0, 0, 15 ; Pausa

 12, 4, 22, 15 ; Mi

 12, 4, 21, 15 ; Fa

 12, 4, 18, 30 ; Sol (lunga)

 0, 0, 0, 15 ; Pausa

 12, 4, 18, 15 ; Sol

 12, 4, 16, 15 ; La

 12, 4, 18, 15 ; Sol

 12, 4, 21, 15 ; Fa

 12, 4, 22, 15 ; Mi

 12, 4, 28, 30 ; Do (lunga)

 0, 0, 0, 15 ; Pausa

 12, 4, 18, 15 ; Sol

 12, 4, 16, 15 ; La

 12, 4, 18, 15 ; Sol

 12, 4, 21, 15 ; Fa

 12, 4, 22, 15 ; Mi

Pagina 231 di 236

 12, 4, 28, 30 ; Do (lunga)

 0, 0, 0, 15 ; Pausa

 12, 4, 28, 15 ; Do

 12, 4, 30, 15 ; Sol (basso)

 12, 4, 28, 30 ; Do (lunga)

 0, 0, 0, 15 ; Pausa

 12, 4, 28, 15 ; Do

 12, 4, 30, 15 ; Sol (basso)

 12, 4, 28, 30 ; Do (lunga)

 0, 0, 0, 15 ; Pausa

 255 ; Marcatore di fine canzone

end

 music_note_duration = 1 ; Inizia subito la prima nota

 return

Nota che non ci sono commenti tra sdata e end. Non inserire MAI un commento rem o ; in

una riga di un blocco sdata. Se lo fai, il compilatore interpreterà la parola “rem” o il punto e

virgola come un dato numerico, “inquinando” la tua partitura musicale e causando errori

imprevedibili o suoni distorti.

Sentirai “Fra Martino Campanaro” suonare in loop. La subroutine music_play si occupa di tutto:

tiene il tempo, legge i dati usando sread e il puntatore x, e imposta i registri.

Pagina 232 di 236

Appendice E: Cicli e Kernel

Questa appendice è il tuo riferimento tecnico per una delle risorse più limitate e cruciali della

console: il tempo della CPU. Consultala ogni volta che hai bisogno di ottimizzare il tuo codice,

quando il tuo gioco “trema”. Cosa fare se il gioco è troppo lento? Non devi per forza eliminare

delle funzionalità. Spesso basta distribuire il carico di lavoro in modo più intelligente.

1.Il Budget di un Frame e la Tabella dei Cicli CPU
Ogni frame dura circa 16.67 millisecondi. Durante questo tempo, la CPU 6507 può eseguire un

numero limitato di “cicli”. Il tuo codice deve rientrare in questo budget per evitare problemi

grafici.

Divisione del Tempo in un Frame:

Fase Durata (Cicli CPU

approx.)

Scopo Principale

VBlank ~1675 cicli Esecuzione del blocco vblank. Ideale per logica

“pesante” (IA complessa).

Disegno

Visibile

(gestito dal Kernel) Il Kernel disegna lo schermo. Il tuo codice non viene

eseguito qui.

Overscan ~2700 cicli Esecuzione del main_loop. Ideale per logica “urgente”

(input, movimento).

Regola Fondamentale: La quantità di codice eseguita tra un drawscreen e il successivo deve

richiedere molto meno di 2700 cicli per evitare lo screen roll.

Tabella dei Costi delle Operazioni Comuni

Operazione Cicli

CPU

(stima)

Livello di

Costo

Note

Assegnazione (a = 5) 4 - 6 Molto

Basso

Veloce e sicura.

if (semplice) 8 - 12 Basso

if collision(...) 14 - 18 Basso Leggermente più costoso.

gosub / return 20 - 24 Medio-

Basso

Ha un piccolo overhead.

pfscroll up/down ~30 Medio

Moltiplicazione /

Divisione

50 -

100+

Alto Evitare nei loop stretti. Ricordati che puoi

moltiplicare e dividere per 2 usando gli operatori

di bit shift << e >> (appendice A)

pfscroll left/right 80 -

100+

Molto

Alto

Estremamente costoso, da usare con cautela.

Pagina 233 di 236

2.Sfruttare il “Tempo Morto” – Spostare il Lavoro nel VBlank
Questa è la tecnica di ottimizzazione più importante. Per capirla, dobbiamo tornare per un istante

a come funziona un vecchio televisore.

Cos’è il Vertical Blank (VBlank)? Come abbiamo visto, un televisore disegna un’immagine

(un frame) tracciando righe orizzontali dall’alto verso il basso. Una volta arrivato in fondo, il

pennello elettronico deve “tornare indietro” fino all’angolo in alto a sinistra per iniziare a

disegnare il frame successivo. Durante questo breve viaggio di ritorno, il raggio viene spento.

Questo intervallo di tempo in cui lo schermo è “buio” si chiama Vertical Blank (VBlank).

Anche se dura solo pochi millisecondi, per la velocissima CPU dell’Atari 2600 questo è un

tempo prezioso. Il kernel standard di Batari Basic ci mette a disposizione circa 1675 cicli CPU

durante il VBlank, un’enorme quantità di “tempo libero” in cui possiamo eseguire calcoli senza

interferire con il delicato processo di disegno.

L’Overscan e il VBlank in Batari Basic

Il codice del nostro main_loop viene eseguito in un’altra fase, chiamata Overscan, che avviene

subito dopo che il frame è stato disegnato. L’Overscan è il momento ideale per la logica

“urgente” (leggere il joystick, muovere il giocatore), perché le sue conseguenze saranno visibili

nel frame immediatamente successivo.

Il VBlank, invece, avviene prima del disegno. È quindi perfetto per tutta la logica “pesante” e

non urgente, i cui risultati possono aspettare un frame per essere visualizzati.

Composizione frame video

Pagina 234 di 236

Come si Usa vblank in Batari Basic? Per eseguire del codice durante il VBlank, è sufficiente

creare un blocco speciale nel tuo programma, delimitato dall’etichetta vblank (indentata!) e dal

comando return.

main_loop

 rem ... qui va solo la logica "leggera" e urgente ...

 drawscreen

 goto main_loop

 vblank

 rem Qui va la logica "pesante" e non urgente

 gosub update_complex_enemy_ai

 gosub calculate_scores

 return

Il codice nel blocco vblank verrà eseguito automaticamente ad ogni frame, subito prima che

drawscreen inizi il suo lavoro. Non devi chiamarlo con gosub; il kernel lo fa per te.

Prova questo codice. Anche se nel main_loop cerchiamo di impostare lo sfondo a verde, il

comando nel vblank lo cambia a rosso perché in realtà è eseguito un attimo prima di

drawscreen, cioè prima che il TIA inizi a disegnare.

main_loop

 COLUBK = $9E ; Verde

 drawscreen

 goto main_loop

 vblank

 COLUBK = $44 ; Rosso

 return

Poiché il codice nel vblank viene eseguito prima del disegno, qualsiasi modifica alle posizioni

degli oggetti (player0x, score, ecc.) non sarà visibile fino al drawscreen successivo. Questo

introduce un frame di ritardo. Per questo motivo, non spostare mai nel vblank la logica che

richiede una risposta immediata, come la lettura del joystick e il movimento del giocatore.

Riserva il vblank per calcoli che possono “permettersi” di essere aggiornati con un piccolo

ritardo, come l’intelligenza artificiale di un nemico lontano o l’aggiornamento di un timer

complesso.

Pagina 235 di 236

Appendice F: Guida ai Colori e Standard TV

Il chip TIA dell’Atari 2600 può generare una gamma di colori sorprendentemente ampia per

l’epoca. Conoscere la tavolozza e come i valori esadecimali corrispondono ai colori è

fondamentale per dare ai tuoi giochi l’aspetto giusto e creare l’atmosfera perfetta.

1. Come Funzionano i Colori sull’Atari 2600
Un colore sull’Atari 2600 è definito da un singolo byte. Questa tabella mostra la tavolozza di 128

colori disponibile sullo standard televisivo NTSC (Nord America, Giappone). I valori sono in

esadecimale. Per trovare un colore, incrocia la la riga della Tonalità (la prima cifra, $X-) con la

colonna della Luminosità (la seconda cifra, $-Y). Ad esempio $1E è un bel giallo brillante.

2. NTSC vs. PAL: Gestire i Diversi Standard Televisivi
I televisori nel mondo non sono tutti uguali. I due standard principali dell’epoca erano NTSC e

PAL, e avevano differenze importanti che influenzano i nostri giochi.

Frequenza di Aggiornamento video:
NTSC: ~60 frame al secondo (Hz). È lo standard usato in Nord America e Giappone.

PAL: ~50 frame al secondo (Hz). È lo standard usato in gran parte d’Europa e Australia.

Tavolozza dei Colori:
NTSC: 128 colori (la tabella sopra).

PAL: 104 colori, generalmente meno saturi e con tonalità leggermente diverse.

Il compilatore bB per default crea una ROM in formato NTSC. Per creare una versione per il

mercato europeo (PAL), dovresti usare la direttiva set tv pal all’inizio del codice. Per garantire la

Pagina 236 di 236

massima compatibilità e divertimento, il consiglio della community homebrew è quasi unanime:

sviluppa sempre per NTSC. Un gioco NTSC (60Hz) funzionerà sulla maggior parte dei sistemi

e televisori PAL moderni (spesso girando a 60Hz), mantenendo la velocità e il gameplay

originali. Al contrario, un gioco PAL (50Hz) risulterà ingiocabilmente veloce e con suoni striduli

sui sistemi NTSC. Attieniti allo standard NTSC per raggiungere il pubblico più vasto e garantire

un’esperienza di gioco coerente.

3. Consigli Pratici per la Scelta dei Colori
La regola più importante. Assicurati che i tuoi personaggi si distinguano chiaramente dallo

sfondo. Un eroe blu scuro su uno sfondo nero sarà quasi invisibile! Scegli colori con luminosità

molto diverse. Per creare ombre o punti luce su un personaggio, non cambiare tonalità. Usa

semplicemente una versione più scura (luminosità più bassa) o più chiara (luminosità più alta)

dello stesso colore. I colori su un emulatore sono perfetti e brillanti. Su un vecchio televisore a

tubo catodico (CRT), apparivano più scuri, “impastati” e con leggere sbavature. Quando scegli i

colori, preferisci quelli brillanti e ad alto contrasto per garantire che siano ben visibili anche

sull’hardware reale.

