Programmare giochi per Atari 2600 in Batari Basic

Versione 0.1 Dicembre 2025

By E-Paper Adventures

epaperadventures@gmail.com

Pagina 1 di 236

mailto:epaperadventures@gmail.com

Pagina 2 di 236

Sommario

Programmare giochi per Atari 2600 in Batari BaSIiC..........cccccevuiiiieiieii i 1
Tl [N 74 To] T TSP URRTROPPRN 7
Le Icone speciali del manuale.............coooiiiiiii e 8
Perche qUESto MAanUAIE?couvoiiiiece et ee s 9
Ringraziamenti, FONtE € LICENZAcccoiiiiiiiee e s 9
Parte 1: Le Basi della Programmazione in Batari BaSiC............cccccoviiriiiiiiieiccsc s 11
(OF o] 1 (o] (o AR I WU 0] I N 11 (=474 SRR 13
1.1 —Un Salto Nel TEMPO ...c.coiiiiiiiiieeee e 13
1.2 — 11 inguaggio Batari BaSICc.coeiiriiiiiiiiiieieee e 14
1.3 — Assemblare IOffICING.......ccuiiiiiiiiiie i s 14
Capitolo 2 — Cominciamo a Programmare! ... 20
2.1 — Lo Scheletro di un programma batari DasiCcccceeereririiiiiniiieiecec e 20
2.2 — Anatomia dello Scheletro: 1l Codice SPIegatO.........cceeveiieieeiiiiie e 23
2.3 — Il Ciclo Infinito: Il Motore del TEeMPO.........coviiiiiieee e 25
2.4 — | Registri del TIA: Il Cruscotto della Console...........cccooeiiiiiiniiiicc 25
2.5 — Missione: “Hello, Player!”..........cciiiiiiiiiiiic 25
2.6 — 11 COUICE SPIBGALO.......evieeitistiiiieiie ettt ene s 26
2.7 — 11 Sistema di Coordinate dell’ ALari........ccccccvveiiieeiiieesiie e saee s 27
Capitolo 3 — MUOVETE I'EIOC ..o.veviiiiiiieiieieieie ettt 29
3.1 — Ascoltare il Giocatore: Leggere il JOYSHCKccooeriereriniiiniiieeeeese e 29
KT o T 0TI = T SR 29
3.3 — Il Ponte di Comando: Joystick e Interruttori della Console...........ccccovevieiiieiinnne 31
3.4 — Clamping: | Muri Invisibili del MoNdOccooiiiiiiieieeee 32
3.5—Un Tocco di Stile: Riflettere lo Sprite con REFPOcccoooiiiiiiiiieiccccs 33
Capitolo 4 — Costruire 1o Scenario: HH Playfield............cccoovoiiiiiiiie e 37
4.1 — La Geometria del Playfield ... 37
4.2 — La NOSEra Prima STANZAcccveiieieiie et ee e ste e ense e 38
4.3 — Davanti 0 Dietro? La Priorita cOn CTRLPFcccooiiiiiiicieeeee e 39
4.4 — Scontrarsi con i Muri: La Funzione colliSion ... 40
4.5 — Muri Solidi con la Tecnica “Salva € Ripristina”..........ccocoevvivieiniinnniiienniee e 40
Capitolo 5 — La Voce della Console: Suoni ed Effetti Speciali..........cccooeiiiiiiiniiincnnnne 43
5.1 — L’ Anatomia del SUONO AtAIT.....cuviiiiuieiiiiieiiiiie st e siieesreeesee s sree s ssae e ssneessareeensaeeens 43
5.2 — 11 “Sound Timer”: Creare Effetti Sonori @ Tempo........ccccevvviiiiiiiiiieniiie e 43

Pagina 3 di 236

5.3 — L’Arte dell’Ordine: gOSUD € TETUITeeuviiiiiiiieiiiiesiece e 44

5.4 —COlliSIONE CON SUONDveviiiiiisiieiieieie ettt sttt bbb nne s 44
Capitolo 6 — Animazione a Frame MUItIpli.........c.coooevvii i 47
6.1 — OItre 10 SPrite SLALICO........eiuiiiiiieiieieee e 47
6.2 — La Tecnica del “Cartone Animato”: Alternare le Immagini con gosub................... 47
6.3 — 1l Metronomo del Codice: Usare i Timer per il RItMOcccccvevevieeniiiieviesee, 47
6.4 — Creare un’ Animazione di COTSA........uuiiiiuieiiiiieiiireiiie e it e sreeesreeesbeeessaee e snaeeessaeeens 48
Capitolo 7 — Progetto Guidato: “Fuga dal Castello Digitale”...........cccccoviirineiniineniinnennns 52
7.1 — Fase 1: La Mappa del Tesoro — Pianificazione € DeSign.........ccccccevvvevvivieveesieennnn, 52
7.2 — Fase 2: Le Fondamenta — Mappa delle Variabili e Grafica..........ccccccoceninninnnnnns 52
7.3 — Fase 3: La Macchina a Stati — Il Cervello del GIiOCOcccvvvviiiniieiincicscseins 53
7.4 — Fase 4: Dare Vita al Mondo — Input, 1A, Suoni € DISegno.........ccccevveveeiierieesieennnn, 54
7.5 —Fase 5: Le Regole del Gioco — Collisioni @ LOgiCaccccvreriiieiieieniiincseins 55
Parte 2: Tecniche Avanzate e Segreti dell'Hardware............ccocooiiiiiniiinieieee s 59
Capitolo 8 — Alias, palla € MISSiliceiiiiiiiiii e 61
8.1 — Organizzare il Codice: Gli Alias CON diMccooviiiiiiiiieeeee s 61
8.2 — Oggetti Grafici Semplici: Palla e MisSili..........ccccoovevieiiiiiiiciceceee e 62
8.3 — La Palla RIMDalZANTEcc.ooeeiiee e e e 62
8.4 — La Magia dei MisSili Orizzontalicccooviiiiiiiiiieeee e 63
8.5 — La Spada dell’ETr0e.........ccccuiiiiiiiiiiiciic e 64
8.6 — Progetto Guidato: Tiro al Bersaglio..........ccccoovviiiiiiieiineicseeeeee e 67
8.7 —USAre I DIT-FIAG .o 70
Capitolo 9 — Padroneggiare il Playfieldccccooviiiiiiiiccecce e 73
9.1 — Leggere il Mondo: Il Comando pfreadccooeeirieneneneseeee e 73
9.2 — Missione: Costruire e Distruggere con pfpiXel ..o 73
9.3 — Mondi in Movimento: Lo Scrolling con pfscroll..............cccooeiiiiiiiiiiicic 76
9.4 — Movimento su Griglia per Labirinti Giocabili...........ccocoiiiiiiiiiiiiiie 76
Capitolo 10 — Mondi a Schermate Multiple e Kernel Potenziati............ccccceoeieveiciincnnnn 79
10.1 — Creare Mondi a Schermate MUltiple...........cccooviiiiic i, 79
10.2 — LE DUB SEANZE ...ttt 79
10.3 — 1 Segreti del Kernel: Grafica MUItICOIOrecccovevieiiiiiee e 81
Capitolo 11 — L’Illusione della Fluidita: Movimento Sub-Pixel e Fisica.............ccccccvevnnnnnn. 86
11.1 — Precisione deCIMAIEcc.ooiiiiiiiiie et 86
11.2 — L’ Aritmetica a Virgola Fissa (8.8) in Batari Basic..........ccccoovvviiiiniiiiniiie e 86

Pagina 4 di 236

11.3 — Platform Hero — Fisica Realistica con Salto € Gravitaccooveeeeeeeeeeeeeeeceeee 87

Capitolo 12 — Il Cruscotto del Gioco: Punteggi, Vite e Barre di Stato...........ccccceevvevieennne. 90
12.1 — 1l Punteggio Tradizionale: Il ComMando SCOTeccccvvveiverieiieieee e 90
12.2 — Oltre i Numeri: Le Barre di Stato pfSCOre.........cooovveiiiiiiiiiiceeeee e 91
12.3 — Barra della Vita € CONtatore Vite........ccocvviiiiiiiieieie s 91
12.4 — Un’Alternativa alle Vite: I Sistema di DanNi..........cccccevveeiieiiieiiee e, 92

Capitolo 13 — Ottimizzazione ¢ Debug Avanzato: La Caccia ai “Bug”cccocevvrvnennnnn 94
13.1 — I1 Nemico Numero Uno: Lo “Screen Roll”........ccccviiiiiiiiii e 94
13.2 — Rimanere nel Budget: Strategie di Ottimizzazione............cccceevvevvereiiieceeie s 94
13.3 — La Lente d’Ingrandimento del Detective: Il Debug VisSivoc.ccccvvveiiiiniinennn. 95

(OF: o] | (0] (o 00 I A e Ao [T o SRS 96
14.1 - Diventa un Maestro di Batari BaSIC...........cccovvierieriereniiesesisieeeiee e 96
14.2 - Guardare “Sotto il Cofano”: Piegare ’'Hardwareccccooivviriiiinieniicnen, 96
14.3 - Unisciti alla Community: Non Sei SOl0! ... 97
14.4 - Giocare sulla TV di Casa: L’Esperienza AUtentiCa........ccocoverveeieereesieesieessieenene 97
14.5 — Programmi da provare € apPendiCicceeerieieriereniesiese e 98

Parte 3: GIOCNT A PrOVAIEoiiiiiieieiee bbb 99
1. SIMPIE PONG (1 VS. CPU) ..ottt 101
2. Advanced Pong (Pong con OStacoli — 1 VS 1)....ccucieiriiiiiinesiesieseeeee e 102
3. Dynamic Pong (Racchetta che si Accorcia —1 VS CPU)cccccovevieviieiicceee e 102
4. Killer Acorn (Ghianda ASSASSING)couereriiriiieienie ettt 102
5. SIMPIE SOCCET (L VS 1) ettt bbbttt 103
6. The Watch (Il Guardiano del Castello)ccoeiieiieiiiieceee e 103
7. Minotaur (schermate MUITIPIE)ooiiiiii i 104
ST T2 0] 0T TP U PSP TP P URRPRPP 104
9. Gnamm (MoVvIimMenti SU grighi@).........cccvecieiiiiiieiie s 105
10. Highway Racer (corse in Autostrada con aritmetica a virgola fissa)............ccccceeu.. 105
11. DiSC DOQ (USO di FANA) ..ot 105
Parte 4: APPENAICT ...eeueiuiiieieiite et b bbbt b bbb 211

Appendice A: | Pilastri del Codice — Sintassi @ OPeratori.............cooveeeieererenesesesesennns 213
1. Struttura del Codice & INAENTAZIONEcceiiuiiiiiieieee e 213
2. Binario ed €SadeCimalecccooiiiiiiiiie e s 213
3. Operatori MatematiCi € LOGICH.......ccciveiiiiieieeie s 214
4. OPEIAtOrT BItWISE ...ccuviiiieieieie sttt bbb es 215

Pagina 5 di 236

Appendice B: Il Cruscotto dell’Atari — Guida ai Registri e alle Variabili Speciali............ 216

1. Gerarchia di Visibilita degli Oggetti (Ordine di DiSEgN0)........cccccvevvvvieeivereiiesieinns 216
2. Tabella Completa dei Registri e Variabili Speciali.........c...ccccvivvviiiiiiiiiiiece e, 216
3. Moltiplicare gli Oggetti: Trucchi con NUSIZ e CTRLPF ... 219
Appendice C: Ricette di COAdICE AVANZALE..........ccceevueiieiieie e 221
1. 1l Centralino Veloce: on...gosub € ON...JO0L0cccviieiieiiec e 221
2. ONLiQOSUD . bbbt n et 221
1 o] o T o[{0 T RSP UPRI 221
4. Gestione dei NUMETT CASURIToveveieiiiicciesce e e 222
5. RANGE CASUAN ... 222
6. Posizionamento Casuale e Intelligente degli SPrite........c.cccevvvieviieve e sieceee e 223
7. Generare -1 0 +1 CasualMeNTe.........coueiiiiie i 223
8. Le Variabili temp: La Memoria “Usa € Getta”c.ccovvvvrieiiiieenieiinee e 223
9.Gli Array data: Archivi di Informazioni nella ROMccccccoeiiiiiiicicieccece e 223
10. Le “Comb Lines” ¢ 1a Maschera Neraccccvveeiiiiiiic i 225
11. Eliminare le Linee Nere del Playfield con no_blank _linescccoocevovevvieinennns 225
12. AritmetiCa BCD € SCOEiiuviuieiieieiieiie sttt sttt st nneens 225
Appendice D: La Sala del Compositore — Guida ai Suoni e alle Noteccccoveenenne. 227
1.1 Registri del Suono (le Manopole del Sintetizzatore)..........c.ccoovvviviciene i 227
2.La Scelta dello Strumento (il RegiStro AUDC)cccooeiiiiiiiiiisereeee e 227
3.La Partitura: Tavola Completa delle Note (il Registro AUDF).........ccccccevvvevveieineenne. 228
4.11 Motore Musicale: Creare Melodie CoNn Sdata..........cccooeiirineiinieeee e 229
Appendice E: Cicli @ KMl ... s 232
1.11 Budget di un Frame e la Tabella dei Cicli CPUccccooveiiiiiiiiiccee e 232
2.Sfruttare il “Tempo Morto” — Spostare il Lavoro nel VBIanK...........ccccocvvniiinnnnnne 233
Appendice F: Guida ai Colori e Standard TVccocveieiiiiieieieeee s 235
1. Come Funzionano i Colori sull’ Atari 2600cccveiieieiiieeiiiiee e 235
2. NTSC vs. PAL: Gestire i Diversi Standard TeleviSiViccccceeveviverviieiieneee s 235
3. Consigli Pratici per la Scelta dei COlOr.........ccooviiiiiiiieie e 236

Pagina 6 di 236

Introduzione

Nel lontano 1977, nelle case di tutto il mondo, apparve una piccola scatola di legno e plastica che
avrebbe cambiato per sempre il modo di giocare: I’ Atari 2600. In un’epoca senza smartphone e
senza Internet, dove i televisori avevano schermi curvi e i telefoni erano attaccati al muro con un
filo, questa console era pura ingegneria creativa. Permetteva a chiunque di controllare mondi

fatti di blocchi colorati e suoni elettronici direttamente dal salotto di casa.

Foto: Sergey Galyonkin, CC BY-SA 2.0.

L’ Atari 2600 non era solo un prodotto; fu un fenomeno culturale che defini un’intera
generazione, vendendo oltre 30 milioni di unita nel mondo. Per questa console furono scritti piu
di 500 giochi ufficiali, con centinaia di milioni di cartucce vendute, tra cui capolavori come
Pitfall! che da solo supero i 4 milioni di copie.

Per riuscirci, i programmatori di allora compirono veri e propri miracoli. Immagina di dover
costruire un grattacielo con una manciata di mattoncini LEGO. L’Atari 2600 aveva solo 128
byte di memoria RAM. Non megabyte, non kilobyte. Byte. Per darti un’idea, uno smartphone
moderno ha una quantita di memoria RAM almeno 30 milioni di volte superiore. Le cartucce
dei giochi contenevano tipicamente 2 o 4 kilobyte di ROM (memoria di sola lettura), mentre un
gioco moderno puo superare i 50 gigabyte. La bravura di quei pionieri non consisteva nell’usare
una potenza infinita, ma nel creare divertimento, avventura ed emozione dal quasi nulla.

Questo libro € il tuo biglietto per quel mondo. Non stai solo per imparare a scrivere codice. Stai
per imparare a pensare come i pionieri dei videogiochi, armato solo di ingegno e di una manciata
di byte. Scoprirai che programmare per I'Atari 2600 e una delle sfide piu gratificanti che
esistano. Nell'era moderna, dove la potenza di calcolo & quasi illimitata, & facile perdersi in
grafiche fotorealistiche e mondi sconfinati. Ma su questa console, le regole sono diverse. Con

Pagina 7 di 236

cosi poche risorse a disposizione, non puoi affidarti alla tecnologia per creare il divertimento.
Devi inventarlo. Qui, il vero "sale™ del game design emerge nella sua forma piu pura. L'ingegno
non € un'opzione, e l'unico strumento che hai. Ogni byte risparmiato, ogni trucco per simulare un
movimento fluido, ogni scelta di colore per rendere leggibile un nemico, diventa una piccola
vittoria. 1l focus si sposta inevitabilmente dalla complessita visiva alla giocabilita: un gioco Atari
ha successo solo se € divertente, immediato e intelligente. La sfida sta nel distillare un'idea fino
alla sua essenza, creando un'esperienza coinvolgente con quasi nulla. E un'arte che ti costringera
a diventare un programmatore piu creativo e consapevole.

Stai per scoprire i segreti di una macchina leggendaria e usare i suoi stessi limiti come fonte di
ispirazione per creare un videogioco tutto tuo. E non sei solo: ancora oggi, una vivace
community di appassionati, chiamata homebrew, continua a creare giochi nuovi di zecca per
questa console, spingendo i suoi limiti oltre ogni immaginazione. Molti di questi nuovi giochi
vengono persino venduti su cartucce fisiche, a dimostrazione della vitalita immortale di una
piattaforma dove l'inventiva conta piu di ogni altra cosa.

Le Icone speciali del manuale

Mentre esploreremo Batari Basic, vedrai spesso dei ritagli grafici del gioco leggendario: Pitfall!
Creato nel 1982 dal geniale programmatore David Crane per Activision, Pitfall! non era solo un
gioco: era una rivoluzione tecnologica. In un’epoca in cui i giochi erano spesso limitati a una
singola schermata, Pitfall! presentava un mondo vasto e interconnesso di moltissime schermate,
pieno di giungle, sabbie mobili e tesori. Il suo protagonista, Pitfall Harry, mostrava
un’animazione fluida che sembrava impossibile per I’hardware di allora. Pitfall! & diventato il
simbolo di ci0 che ¢ possibile ottenere quando I’ingegno del programmatore supera i limiti
dell’hardware. E la nostra stella polare in questo viaggio.

In questo manuale incontrerai delle icone speciali:

La testa di un coccodrillo ti avverte di una trappola
pericolosa: un errore comune, una limitazione
hardware o un concetto difficile. Presta la massima
attenzione!

Pitfall!

Un lingotto d’oro rappresenta un consiglio prezioso, un
“tesoro” di conoscenza. E un trucco del mestiere o un
suggerimento che rendera il tuo codice piu elegante ed
efficiente.

Consiglio prezioso

Una scaletta che scende indica che stiamo per
analizzare un concetto in profondita, svelando i
meccanismi interni dell’hardware o del software.

Approfondimento
Tecnico

Pagina 8 di 236

La figura del nostro eroe, Pitfall Harry, ti invita
Prova Tu! all’azione. E un esercizio pratico, una sfida per mettere
alla prova le abilita che hai appena imparato.

Perché questo manuale?
Un tempo, soprattutto negli anni ‘80, generazioni di programmatori sono nati cosi: collegando un
computer al televisore di casa e iniziando a digitare comandi in un linguaggio chiamato BASIC.
Quel primo PRINT "CIAQ" su uno schermo a tubo catodico era un imprinting incredibile. Era il
momento in cui si scopriva di poter dare ordini a una macchina, di poter tradurre un pensiero in
un‘azione. Si imparava sul campo il concetto di algoritmo, il flusso di un programma, l'arte della
caccia al "bug" e I'importanza di tenere il manuale sempre a portata di mano.
Oggi, I’approccio iniziale alla programmazione € spesso visuale, fatto di blocchi colorati da
trascinare e risultati grafici immediati. Ma scrivere codice testuale su uno "schermo nero" ha
qualcosa di ancestrale, un potere unico. Costringe a visualizzare il flusso nella propria mente, a
tracciare lo stato delle variabili, a trasformare un‘idea in una sequenza logica di istruzioni. E un
esercizio che non insegna solo a programmare, ma a pensare come un programmatore,
costruendo fondamenta logiche solide.
Programmare in Batari Basic I'Atari 2600, con le sue incredibili limitazioni, € la palestra perfetta
per forgiare lI'ingegno:

e Unarisoluzione grafica bassissima
Solo due sprite (player0, playerl), due missili (missile0, missilel) e una palla (ball).
Uno sfondo (Playfield) a blocchi
Due canali audio con suoni molto caratteristici
Appena 26 variabili intere (byte) per tutta la logica del tuo gioco.
Poco piu di un centinaio di righe per il tuo codice

In un mondo di abbondanza tecnologica, queste limitazioni potrebbero sembrare insormontabili.
Invece, sono la nostra piu grande opportunita. Con cosi poche armi a disposizione, non puoi
affidarti alla grafica mozzafiato; devi concentrarti su cio che rende un gioco davvero
interessante: la giocabilita, la fantasia, I'inventiva. La sfida non é creare un gioco nonostante i
limiti, ma creare un bel gioco grazie a essi, spremendo ogni byte e scoprendo trucchi incredibili
per superare cio che sembra impossibile.

E la ricompensa finale & qualcosa che I'era del "tutto e subito™ ha quasi dimenticato: la
soddisfazione di creare, con fatica e ingegno, qualcosa di tangibile. E il grande vantaggio di
Batari Basic e che il tuo programma puo anche diventare una vera cartuccia, da inserire nella
console piu importante della storia, da giocare sul televisore con amici e familiari.

Ringraziamenti, Fonti e Licenza

Nel preparare questo manuale, si € attinto alla conoscenza collettiva della community Atari, un
tesoro accumulato in decenni di passione. Si desidera ringraziare in particolare le seguenti due
fantastiche fonti, che sono state un punto di riferimento indispensabile:

Pagina 9 di 236

e |l sito Random Terrain's Batari Basic Page, I'enciclopedia definitiva su Batari Basic,
curata con dedizione e competenza.

e Laserie di articoli "Programmare il 2600" di Giorgio Balestrieri sulla
rivista RETROMAGAZINE, una fonte preziosa di informazioni.

Nel manuale sono inoltre presenti diversi listati di programmi trovati online e riadattati. Laddove
possibile, i relativi autori sono stati citati.

Licenza d'Uso e Disclaimer
Questo manuale é rilasciato sotto la licenza Creative Commons Attribuzione - Non
commerciale 4.0 Internazionale (CC BY-NC 4.0).

Questo significa che sei libero di:

Condividere: Copiare, distribuire e trasmettere il materiale in qualsiasi formato per scopi non
commerciali.

Adattare: Modificare, trasformare il materiale e basarti su di esso per scopi non commerciali.

Alle seguenti condizioni:

Attribuzione: Devi riconoscere una menzione di paternita adeguata all'autore originale, E-
Paper Adventures, fornire un link alla licenza e indicare se sono state effettuate delle
modifiche.

Non Commerciale: Non puoi utilizzare il materiale per scopi commerciali. Questo include la
vendita diretta del manuale o di sue versioni modificate, o il suo utilizzo in prodotti o servizi a
pagamento. L'uso didattico, personale e senza scopo di lucro € invece pienamente incoraggiato.

In parole semplici: puoi usare, copiare, modificare e distribuire questo manuale liberamente per
qualsiasi scopo educativo o personale, a patto di citare sempre l'autore originale e di non trarne
un profitto economico.

Disclaimer:

Le informazioni, i codici e le tecniche contenute in questo manuale sono forniti "cosi come
sono", senza garanzie di alcun tipo. L'autore ha compiuto ogni sforzo per garantire l'accuratezza
dei contenuti, ma non si assume alcuna responsabilita per eventuali errori, omissioni o danni
derivanti dall'uso delle informazioni qui presentate.

Pagina 10 di 236

Parte 1: Le Basi della Programmazione in Batari Basic

Immagine del gioco Pitfall! di David Crane per Activision

Pagina 11 di 236

Pagina 12 di 236

Capitolo 1 — | Tuoi Attrezzi

Prima di partire per il passato, hai bisogno della sua attrezzatura. In questo capitolo, prepareremo
insieme la nostra “officina digitale”: un luogo speciale sul tuo computer moderno per
programmare I’ Atari 2600. Non preoccuparti, anche se la nostra destinazione ¢ “vintage”, i nostri
strumenti saranno moderni, potenti e facili da usare.

Foto: Sergey Galyonkin, CC BY-SA 2.0.

1.1 - Un Salto nel Tempo

Immagina di tornare nel 1977. | computer personali sono ancora un sogno per pochi e i
videogiochi sono una novita esplosiva confinata nelle sale giochi. In quell’anno, Atari lancia una
scatola magica che cambiera tutto: I’Atari Video Computer System, che il mondo imparera a
conoscere come Atari 2600.

Per la prima volta, intere famiglie potevano giocare a titoli come Pac-Man, Space Invaders e
Pitfall! direttamente sul televisore di casa, grazie a delle cartucce intercambiabili. La 2600 non
era solo una console, era un fenomeno culturale che ha definito un’intera generazione.

Oggi, a decenni di distanza, potresti pensare che sia solo un pezzo da museo. E invece no!
Un’incredibile comunita di appassionati, chiamati homebrew developer (sviluppatori
casalinghi), continua a creare giochi nuovi di zecca per questa console, spingendo i suoi limiti
oltre ogni immaginazione. E tu stai per diventare uno di loro.

Il nome in codice originale dell’ Atari 2600 era “Stella”. Si dice che fosse il nome della bicicletta
di uno degli ingegneri. Anche se il nome ufficiale divenne un altro, quel nomignolo é rimasto nel
cuore degli appassionati. Non a caso, il piu famoso programma per provare i giochi Atari 2600
sul computer si chiama proprio Stella!

Pagina 13 di 236

1.2 - Il linguaggio Batari Basic

Per dare ordini alla nostra console, abbiamo bisogno di un linguaggio che possa capire. L’ Atari
2600 parla solo un linguaggio numerico (fatto di 0 e 1) molto complesso, quasi incomprensibile.
Noi, invece, parliamo una lingua umana. Come facciamo a comunicare?

Usando un traduttore speciale: il linguaggio Batari Basic.

Se hai gia sentito parlare del linguaggio BASIC, forse lo associ a computer come il Commodore
64. Quei BASIC erano come dei traduttori simultanei: ascoltavano un comando e lo traducevano
all’istante. L’ Atari 2600, pero, ¢ una creatura molto piu semplice e non ha abbastanza potenza
per una traduzione dal vivo. Ha bisogno di ricevere istruzioni gia perfettamente tradotte.

Ecco perché il Batari Basic (spesso abbreviato in bB) é cosi speciale:

Parla la lingua dell’Atari. Invece di tradurre al momento, il Batari Basic agisce come un
traduttore che prepara un intero “libro di istruzioni” (il nostro gioco) in un file che una
vera cartuccia Atari 2600 (o un emulatore) puo eseguire. Questo processo si chiama
compilazione.

Conosce le regole della macchina. La sua sintassi, a volte un po’ strana, ¢ stata creata
appositamente per “dialogare” con i chip della console, rispettando le sue incredibili
limitazioni.

E un ponte tra la semplicita e la complessita. Non devi essere un genio dell’assembly
(il linguaggio a bassissimo livello) per iniziare, ma mentre programmi in bB, impari a
“sentire” come ragiona la macchina.

1.3 - Assemblare I’Officina
Anche se la console & antica, la nostra officina sara modernissima. Useremo due strumenti
principali che lavoreranno insieme.

L’IDE (Visual Studio Code + Atari Dev Studio): La nostra cassetta degli attrezzi
digitale. Un Ambiente di Sviluppo Integrato (IDE) & un programma che contiene tutti gli
strumenti di cui abbiamo bisogno. Useremo Visual Studio Code, un editor di testo molto
popolare, con un’estensione speciale chiamata Atari Dev Studio. Insieme, ci daranno:

— Un editor intelligente che colora il codice e ci suggerisce i comandi.

— Il “traduttore” Batari Basic integrato.

— Un pulsante magico (F5) per compilare il gioco e avviarlo all’istante!
L’Emulatore (Stella): Un simulatore per la nostra macchina del tempo. Invece di
usare una vera console Atari 2600, useremo un emulatore: un programma che finge di
essere una console Atari sul tuo computer. Il migliore e Stella (proprio come il nome in
codice!), e Atari Dev Studio lo usera automaticamente per lanciare i tuoi giochi.

E ora di assemblare la nostra officina. | passi principali sono:

Scarica e installa Visual Studio Code dal suo sito ufficiale (cerca “Visual Studio Code”
sul tuo motore di ricerca preferito) per il sistema operativo del tuo computer (Windows,
MacOSs, ...)

Aprilo. Sulla barra laterale sinistra, cerca un’icona con dei quadratini: ¢ la sezione
“Estensioni”. Cliccaci sopra.

Nella barra di ricerca che appare, digita “Atari Dev Studio” e premi Invio.

Clicca sul pulsante “Installa” accanto all’estensione.

Una volta finita I’installazione, riavvia Visual Studio Code.

Pagina 14 di 236

Qui di seguito la procedura in dettaglio per Windows.

Vai sulla sezione download del sito di Visual Studio Code:

Visual Studio Code

https://code.visualstudio.com - Traduci questa pagina

Visual Studio Code - The open source Al code editor

Visual Studio Code redefines Al-powered coding with GitHub Copilot for building and debugging
modern web and cloud applications. Visual Studio Code is free ...

Download
Visual Studio Code is free and available on your favorite ...

Scarica la versione per Windows:

[= 3 Download Visual Studio Code - X + N = o x

(3 C O B codevisualstudio.com/Download B % @ Aced! &) =

’Q Visual Studio Code

Version 1.106 is now available! Read about the new features and fixes from October. x

Download Visual Studio Code

Free and built on open source. Integrated Git, debugging and extensions.

4 Windows deb ¥ Mac
Windows 10, 11 Debian Ubuntu Red Hat. Fadora, SUSE macos 110+
User Installer EEENENENE) i

System
)
Installer CEE

zip
cu

[«8] irvtei chip | Apple silicon

Attendi che il download si completi:

é 30 Documentation for Visual Studi X +

<« C O B codevisualstudio.com/docs/?dv=win64user B X %

VSCodeUserSetup-x64-1.106.3.exe

’o Visual Studio Code Completato — 110 MB

Visualizza tutti i download
Version 1.1

Pagina 15 di 236

Procedi con I’installazione come indicato nelle immagini qui di seguito.

Durante I’installazione Windows potrebbe richiedere ulteriori conferme per procedere
- (controlla se vi € un icona lampeggiante nella barra delle applicazioni in basso e in
— caso clicca su di essa e dai I’OK nella finestra che appare).

1 ﬂ Installazione di Microsoft Visual Studio Code (User) = X

" 3 Installazione di Microsoft Visual Studio Code (User) = X |
. T i
ContiStto dt Roenza Selezione cartella di installazione
Prima di procedere leggi con attenzione le informazioni che seguono. o v B Vil S Coted
Leggi il seguente contratto di licenza. -
{ Per procedere con l'installazione & necessario accettare tutti i termini del contratto. | ‘ | Visual Studio Code sar installato nella seguente cartella. |
. 2 Per continuare seleziona "Avanti".
Questa licenza si applica al prodotto Visual Studio Code. Il codice | Per scegliere un'altra cartella seleziona "Sfoglia”. |
sorgente per Visual Studio Code & disponibile all'indirizzo T S e |
https://github.com/Microsoft/vscode under the MIT license agreement
| at https://github.com/microsoft/vscode/blob/main/LICENSE.txt. Ulteriori)
i informazioni sulla licenza sono consultabili nelle nostre FAQ all'indirizzo 1
https://code.visualstudio.com/docs/supporting/faq.
|)
1 CONDIZIONI DI LICENZA SOFTWARE 1 |
t ' |
|)
O Accetto i termini del contratto di licenza
| (O Non accetto i termini del contratto di licenza) Sono richiesti almeno 435,8 MB di spazio libero nel disco. |
|)
Annulla Indietro Annulla
[})
| 3 Installazione di Microsoft Visual Studio Code (User) = X | % Installazione di Microsoft Visual Studio Code (User) = X
Selezione della cartella nel menu Avvio/Start Selezione processi aggiuntivi
Dove vuoi inserire i collegamenti al programma? Quali processi aggiuntivi vuoi eseguire?
8= Verranno creati i collegamenti al programma nella seguente cartella del menu Awio/Start. Seleziona i processi aggiuntivi che verranno eseguiti durante 'installazione di Visual Studio Code, quindi
a= | seleziona "Avanti".
Per continuare, seleziona "Avanti". Icone aggiuntive:
Per selezionare un'altra cartella, seleziona "Sfoglia".
Crea un'icona sul desktop
isual Studio Code Sfoglia... Altro:
| | (0 Aggiungi azione "Apri con Code” al menu di scelta rapida file di Esplora risorse
(] Aggiungi azione "Apri con Code" al menu di scelta rapida directory di Esplora risorse
[Registra Code come editor per i tipi di file supportati
Aggiungi a PATH (disponibile dopo il riawio)
|
(CJNon creare una cartella nel menu Awio/Start
Indietro Avanti Annulla Indietro Annulla

|) Installazione di Microsoft Visual Studio Code (User) = X |
Pronto per l'installazione |
T programma & pronto per iniziare l'installazione di Visual Studio Code nel computer. |
Seleziona "Installa" per continuare con l'installazione, o "Indietro" per rivedere o modificare le
1 impostazioni. |
Cartella di installazione: a
c ta\Local\Progr VS Code
Cartella del menu Awio/Start: 1

Visual Studio Code

Processi aggiuntivi:
Icone aggiuntive:
Crea un'icona sul desktop
Altro:
Aggiungi a PATH (disponibile dopo il riawio)

Indietro Annulla

Pagina 16 di 236

)G Installazione di Microsoft Visual Studio Code (User)
Installazione in corso

Attendi il completamento dell'installazione di Visual Studio Code nel computer.

Estrazione file...
C:\User:

ppData\Loce rosoft VS Code\Code.exe

Una volta installato, Visual Studio Code verra lanciato.

3§ Installazione di Microsoft Visual Studio Code (User) -

Installazione di Visual Studio Code
completata

Installezion

Lapplicazione p eseguita selezionanda le relative icone.

e dallinstaliazione.

Visual Studio Code

Puoi chiudere subito la finestra di

Welcome e quella relativa agli agenti Al, cliccando sulle relative “X” (circoletto rosso).

File Edit Selection View Go 2 Search
) Walkthrough: Setup VS Codi: X

< W

Get started with VS Code

O Use Al features with Copilot for free

You can use to generate code across multiple files, fix errors, ask

questions about your code, and much more using natural language.

Use Al Features

Build with Agent

Clicca sull’icona estensioni a sinistra (circoletto blu) e nella finestra che apparira inserisci “atari

dev Studio” e successivamente premi su “install”:

) File Edit Selection View Go

EXTENSIONS: MARKETPLACE

atari dev studio

Atari Dev Studi

/N

Kick Assembler 8-Bit

P;u\ H

Dasm macro assembl

Pagina 17 di 236

Install
4, Z

Install

@12k W4

Accetta come credibile I’autore dell’estensione:

& D u trust the publisher “"chunkypixel"?

The extension A ev Studio is published by chunkypixel. This is the
first extension you're installing from this publisher.

@ inkypixel is not

Visual Studio Code has no control over the behavior of third-party
extensions, including how they manage your personal data. Proceed
only if you trust the publisher.

Trust Publisher & Install Learn More Cancel

Controlla in basso che I’installazione proceda e termini correttamente:

BB Extension: Atari Dev Studio X

atari dev studio

Atari Dev Studio
Atari Dev Studio p xol] L3 2 & & 40

Kick Assembler 8-Bi

Dasm macro assemb
Marketplace

Dev Containers
oM
VBCC Atari ST

Atari FastBasic

Atari XE

[Extension 0 K. ow activel

Location \exte: hunkypixel.
Atari BASIC Syntax

Attempting to install Wasmtime. This may take

C# Dev Kit

Categorie

you may ne

ke affact, Leam more about the latest chan.. Don't showr

Pagina 18 di 236

Chiudi Visual Studio Code e cerca sul desktop 1’icona per lanciarlo nuovamente:

Appena si apre la finestra, puoi nuovamente chiudere il TAB di Welcome e quello relativo agli
agenti Al.

Pagina 19 di 236

Capitolo 2 — Cominciamo a programmare!

La nostra officina digitale e pronta. Il nostro primo obiettivo & senmplice, ma fondamentale:
vogliamo ottenere un segnale stabile. Un semplice schermo nero, immobile e silenzioso, sara la
prova che abbiamo stabilito un contatto con il 1977.

2.1 - Lo Scheletro di un programma batari basic

E ora di sporcarsi le mani! Apri Visual Studio Code. Per prima cosa, crea una cartella sul tuo
computer (ad esempio sul desktop) dove conserverai tutti i tuoi progetti per 1’ Atari 2600.
Chiamala, ad esempio, AvventureAtari.

Ora segui questi passi:
1. InVisual Studio Code, vai su File > Nuovo File di Testo (New Text File)

File Edit Selection View Go Run

New Text File Ctrl+N

New File...

New Window

2. Vai subito su File > Salva con nome... (Save As). Naviga fino alla tua cartella
AvventureAtari e salva il file con il nome primo_gioco.bas. L’estensione .bas ¢ molto
importante, perché dice ad Atari Dev Studio che questo e un file Batari Basic!

3. Scrivi queste poche righe di codice nel file. Fai molta attenzione a dove metti gli spazi e a
cosa scrivi all’inizio della riga! La sintassi ¢ come una formula: ogni simbolo deve essere
al posto giusto, spazi a inizio riga compresi!

rem Il mio primo programma bB

set romsize 2k

main
drawscreen
goto main

Ora, premi il tasto F5 sulla tua tastiera.

Pagina 20 di 236

A Stella 7.0: "primo_gioco.bas”

OUTPUT
2600 Basic compilation complete.

Complete. (@)
relocateBB skipped. primo_gioco.bas.bin is not a DPC

Completed build in 8 seconds

Verifying compiled file(s)...

Cleaning up files generated during compilation...
Moving compiled file(s) to 'bin' folder...
Moving debugger file(s) to 'bin' folder...

Se tutto ¢ andato per il verso giusto, I’emulatore Stella dovrebbe aprirsi € mostrarti... uno
schermo nero!

Aspetta, non ti preoccupare! Non hai rotto niente. Anzi, hai appena compiuto il primo, grande
passo. Se vedi uno schermo nero, stabile, che non trema e non “rotola” su se stesso, significa che
tutto ha funzionato! Hai appena creato e avviato il tuo primo programma per Atari 2600. Ben
fatto!

Il Processo di Compilazione

Quando scrivi il tuo codice in Batari Basic (un file con estensione .bas), stai
scrivendo in un linguaggio “ad alto livello”, fatto di parole che possiamo capire
come if, goto, playerOx. Ma la CPU dell’ Atari 2600, il MOS 6507, non capisce
gueste parole. Comprende solo il linguaggio macchina, una sequenza di numeri che
corrispondono a operazioni molto semplici.

E qui che entra in gioco il processo di compilazione.

La compilazione ¢ I’atto di tradurre il tuo codice sorgente (.bas) in un file
eseguibile in linguaggio macchina. Quando premi F5 in Visual Studio Code,
I’estensione Atari Dev Studio avvia un programma chiamato compilatore che fa
esattamente questo.

Il compilatore legge il tuo file bas dall’inizio alla fine e poi converte ogni comando
Batari Basic nel suo equivalente in linguaggio macchina 6507. Ad esempio, la riga
playerOx = 80 viene tradotta in una sequenza di istruzioni numeriche che dicono alla
CPU: “Prendi il numero 80 e mettilo nell’indirizzo di memoria che controlla la
posizione X di player()”.

Il risultato di questa traduzione & un nuovo file, di tipo bin. Questo file .bin (da
“binario”) ¢ la tua cartuccia di gioco virtuale. Non contiene piu parole, ma solo la
sequenza pura di 0 e 1 (rappresentati come numeri) che la CPU dell’ Atari 2600 puo
eseguire direttamente.

Pagina 21 di 236

L’estensione Atari Dev Studio, per mantenere le cose ordinate, crea una sottocartella
chiamata bin all’interno della cartella del tuo progetto. E li che troverai il file .bin
pronto per essere eseguito.

Quando I’emulatore Stella si avvia, non sta eseguendo il tuo file .bas. Quello e solo
il tuo “progetto”. Stella carica ed esegue il file .bin che il compilatore ha creato. E
quel file binario che contiene le vere istruzioni che danno vita al tuo gioco.

Capire questa distinzione e fondamentale: noi scriviamo in un linguaggio umano, il
compilatore lo traduce, e la console esegue solo il risultato finale di quella
traduzione.

E se qualcosa va storto?

Prima che Stella si apra, noterai del testo apparire nella parte bassa di Visual Studio
Code, in una finestra chiamata “OUTPUT”. Questo ¢ il diario di bordo della nostra
officina: ci racconta cosa sta succedendo “sotto il cofano”.

Quando tutto va bene

Se hai scritto il codice correttamente, vedrai un messaggio simile a questo:
Starting build of primo_gioco.bas

batari Basic v1.9 (c)2025

2600 Basic compilation complete.

607 bytes of ROM space left

Completed build in 0 seconds

Launching Stella emulator...

Le righe importanti sono “2600 Basic compilation complete” e “Completed
build”. Significano che il “traduttore” (il compilatore) ha capito le tue istruzioni e

ha creato con successo il file di gioco. Subito dopo, 1’estensione lancera 1’emulatore
Stella.

Quando qualcosa va storto

Se hai commesso un piccolo errore di battitura (ad esempio, hai messo uno spazio
prima di main), il traduttore non capira e si fermera. Vedrai un messaggio di errore:

Starting build of primo_gioco.bas

batari Basic v1.9 (c)2025

line 4: Error: Unknown keyword: main
ERROR: 2600basic compilation failed.

L’emulatore Stella non si avviera. Il messaggio Error: Unknown keyword: main
sembra strano: “main” non ¢ una parola chiave sconosciuta!

Questo ci insegna una lezione fondamentale su Batari Basic: i messaggi di errore
spesso indicano dove si trova il problema, ma non sempre spiegano chiaramente
quale sia. In questo caso, 1’errore non ¢ la parola main, ma lo spazio che la precede,
che viola la regola delle etichette in colonna 0.

Pagina 22 di 236

return

P VIS OUTPUT DE
MELGE b MEOAn Ve | ave

line 58: Error: Unknown keyword: main

#i# ERROR: 26@0basic compilation failed.
Exit code: 1
Completed build in 1 second

2.2 — Anatomia dello Scheletro: Il Codice Spiegato

Quello che hai appena scritto ¢ lo “scheletro” di ogni gioco per Atari 2600. E la struttura
fondamentale che tiene tutto insieme. Analizziamola riga per riga.

rem Il mio primo programma bB = rem (che sta per remark, “osservazione™) ¢ un commento. E
una nota per te, I’essere umano. Tutto cio che scrivi dopo rem su una riga viene completamente
ignorato dal computer. Usalo per prendere appunti e ricordare cosa fa il tuo codice!

set romsize 2k = Questa e una direttiva per il nostro “traduttore” (il compilatore). Gli stiamo
dicendo: “Prepara una ‘cartuccia’ virtuale da 2 kilobyte”. E la dimensione piu piccola possibile,
perfetta per i nostri primi esperimenti.

main - Questa ¢ un’etichetta o label. Pensa a un segnalibro. Deve stare sempre all’inizio della
riga (in colonna 0, senza spazi prima) e serve come punto di riferimento, un luogo a cui
possiamo dire al programma di “saltare”.

drawscreen = Questo & il comando principale. E il cuore pulsante del nostro programma. Ogni
volta che il programma esegue questo comando, dice all’hardware dell’ Atari: “Ok, per ora ho
finito di preparare tutto. Disegna un fotogramma sullo schermo!”. In questo caso, non avendo
preparato nulla, disegna semplicemente uno schermo vuoto (nero).

goto main = goto significa “vai a”. Questa istruzione dice al programma: “Salta
immediatamente indietro fino all’etichetta chiamata main”.
Cos'e un Programma? Il Flusso delle Istruzioni

Pensa a un programma come a una ricetta di cucina per il computer. E una lista di
istruzioni semplici e precise, scritte in un linguaggio che la macchina puo capire.

Proprio come tu segui una ricetta passo dopo passo, il computer esegue il tuo
programma un'istruzione alla volta, dall'alto verso il basso. Questo percorso
sequenziale é chiamato flusso di esecuzione.

Pagina 23 di 236

Comandi come goto o if...then sono gli strumenti che ci permettono di creare cicli,
prendere decisioni e deviare dal semplice percorso dall'alto verso il basso, dando
vita a programmi complessi e interattivi. Li vedremo presto!

Due Tipi di Commenti, rem e ;

In Batari Basic, hai due modi per lasciare note nel tuo codice: rem e il punto e
virgola (;). Sebbene entrambi servano a scrivere commenti, hanno un uso stilistico e
pratico diverso che ti aiutera a mantenere il codice ordinato.

rem (Remark): Per commenti a riga intera.

rem deve trovarsi all'inizio di un'istruzione (dopo l'indentazione). Tutto cio che
segue su quella riga & un commento. E ideale per creare titoli di sezione o per
descrivere in dettaglio un blocco di codice complesso.

; (Punto e virgola): Per commenti a fine riga.

Il punto e virgola puo essere inserito dopo un comando. Tutto cio che segue il ; fino
alla fine della riga viene ignorato. E perfetto per aggiungere brevi note che spiegano
cosa fa una singola riga di codice, senza interrompere il flusso. Fai attenzione che
in alcune piattaforme di sviluppo per Atari 2600 che utilizzano batari basic il ;
non é accettato come commento valido. Se vuoi scrivere codice 100%
compatibile, usa solo rem da solo su righe di codice dedicate!

Evitare errori: suggerimenti

1. Copia gli esempi con precisione: All’inizio, il 99% degli errori deriva da piccole
imprecisioni. Batari Basic &€ molto severo sulla sintassi! Assicurati di copiare gli
esempi esattamente come sono scritti, prestando la massima attenzione a spazi,
due punti (:) e parole chiave, a maiuscole e minuscole. Ecco alcuni suggerimenti:

- P’errore “Error: Unknown keyword: ...” ¢ quasi certamente dovuto a “:” usati
dopo una label (etichetta) oppure a dei rem messi ad inizio riga (serve almeno uno
spazio primal)

TR L)

- le label non vogliono “:” alla fine, ma alcune parole speciali come playfield e
playerQ si! Fai sempre attenzione al “:” alla fine della riga.

- un altro errore tipico sono gli “end” che non sono collocati ad inizio riga
- aggiungi sempre una riga vuota come ultima linea del tuo programma

2. Isola il Problema: Se aggiungi un nuovo blocco di codice e il programma smette
di compilare, I’errore ¢ quasi certamente li. Una tecnica da detective &
“commentare” le nuove righe (mettendo rem all’inizio di ognuna) e provare a
ricompilare. Se ora funziona, sai che il problema é in una di quelle righe.

3. Compila senza Avviare: Premere F5 fa due cose: compila il gioco e, se ha
successo, avvia Stella. A volte, potresti voler solo controllare se il codice compila.
Puoi farlo premendo Ctrl+Shift+B (o andando su “Terminale > Esegui attivita di
compilazione”). Questo eseguira solo la compilazione e ti mostrera eventuali errori
nella finestra di OUTPUT, senza lanciare 1’emulatore.

Man mano che procederemo, questo manuale ti indichera gli errori piu tipici (i
Pitfall!) a cui prestare attenzione. Tecniche di debug piu avanzate, per scovare errori
non di sintassi ma di logica (i cosiddetti “bug”), saranno introdotte nel Capitolo 12.
Per ora, la tua migliore amica é la precisione!

Pagina 24 di 236

2.3 - Il Ciclo Infinito: Il Motore del Tempo

Mettendo insieme main e goto main, abbiamo creato un ciclo infinito. Il programma parte da
main, esegue drawscreen e poi goto main gli dice di tornare subito all’inizio. E poi di nuovo, ¢ di
nuovo, circa 60 volte al secondo! Questo ciclo continuo € cio che mantiene lo schermo stabile e
impedisce all’immagine di “crollare”. E il motore che fa girare il nostro gioco.

2.4 — | Registri del TIA: Il Cruscotto della Console

E ora di mettere in pratica la teoria! Abbiamo detto che il chip TIA ¢ Iartista della console.
Diamogli il nostro primo ordine diretto. Diciamogli di cambiare il colore dello sfondo. Per farlo,
comunicheremo con uno dei suoi “cassetti” speciali, chiamati registri.

Apri il tuo file primo_gioco.bas e modificalo cosi:

rem Sfondo semplice
set romsize 2k

maégLUBK = $86 ; Imposta lo sfondo a un bel blu

Goto main
Cosa fa questo nuovo codice?
COLUBK = $86 - Questa € la nuova riga. COLUBK ¢ il nome del registro del TIA che
controlla il colore dello sfondo (COlor LUMINOSITY Background). Stiamo scrivendo in quel
registro il valore $86. 1l simbolo $ indica che & un numero esadecimale, un modo di contare
molto usato dai programmatori. Per ora, ti basta sapere che $86 corrisponde a un bel blu sulla
tavolozza di colori dell’ Atari.
Ora, premi F5.
I1 tuo schermo nero dovrebbe essere diventato... blu! Hai appena dato il tuo primo comando
diretto all’hardware dell’ Atari! Stai parlando la sua lingua.

2.5 — Missione: “Hello, Player!”

Basta con gli schermi vuoti. E il momento di creare il nostro primo attore, un piccolo eroe fatto
di quadrati luminosi. Daremo vita al nostro primo oggetto grafico, imparando a definirne la
forma, la posizione e il colore.

Modifica il tuo file primo_gioco.bas. Come sempre, fai molta attenzione all’indentazione!

rem Primo programma bB - Hello Player!
set romsize 2k

main
player0:
%$11111111
$11111111
$11111111
%$11111111
end

COLUPO = $1E ; colore del player0O (giallo)
player0Ox 80 ; posizione orizzontale
playerOy 50 ; posizione verticale

COLUBK = $86 ; colore di sfondo (blu)

drawscreen
goto main

Premi F5. Vedrai un piccolo quadrato giallo apparire al centro dello schermo blu. Ce I’hai fatta!
Hai appena evocato il tuo primo sprite dal freddo silicio della console!

Pagina 25 di 236

A Stella 7.0: "primo_gioco.bas”

£ primo_gioco.bas

Completed build in @ seconds

tella emulator...

ariDevStudiow0119) @ B D & W & &
Screenshot dell’emulatore Stella che mostra un semplice quadrato giallo su sfondo blu, come risultato del codice.

2.6 - Il Codice Spiegato
Questo codice e piu complesso. Analizziamolo per capire i segreti che nasconde.

player0 - ¢ un’etichetta speciale che definisce la grafica per il primo oggetto mobile, chiamato
Player 0.

player0:

$11111111

$11111111

$11111111

$11111111
end

Le righe che iniziano con % rappresentano i dati binari (On/Off) che disegnano lo sprite. Ogni
riga ¢ una fetta orizzontale di 8 pixel. 1 significa “pixel acceso” (visibile), 0 significa “pixel
spento”. In questo caso, stiamo creando un blocco solido.

end - segnala la fine della definizione grafica.

Pagina 26 di 236

COLUPO = $1E ; colore del playerO (giallo)
playerOx = 80 ; posizione orizzontale
playerOy = 50 ; posizione verticale

COLUPO = $EA - E il registro del colore per il player0 (COlor LUMINOSITY Player 0). Il
valore $1E corrisponde a un bel giallo brillante.

playerOx = 80 - Imposta la coordinata orizzontale (x) dello sprite.

playerOy = 50 2 Imposta la coordinata verticale (y) dello sprite.

Ma cosa significano esattamente questi numeri? Per capirlo, dobbiamo conoscere la mappa del
nostro universo digitale.

2.7 — Il Sistema di Coordinate dell’Atari
Pensa allo schermo dell’ Atari 2600 come a una mappa. Ogni punto su questa mappa ha delle
coordinate, proprio come in una battaglia navale.
« L’Origine (0, 0): Il punto di partenza ¢ I’angolo in alto a sinistra dello schermo.
* L’Asse X (Orizzontale): | valori di playerOx aumentano da sinistra verso destra.
L’intervallo visibile va circa da 0 (bordo sinistro) a 159 (bordo destro).
* L’Asse Y (Verticale): | valori di playerOy aumentano dall’alto verso il basso.
L’intervallo visibile va circa da 0 (bordo superiore) a 95 (bordo inferiore).

Il Punto di Origine dello Sprite

Quando imposti playerOx e playerQy, a quale pixel dello sprite ti riferisci? La regola é: le
coordinate (x, y) si riferiscono sempre all’angolo in alto a sinistra del tuo sprite.

Quindi, playerOx = 80 e playerOy = 50 posiziona 1’angolo in alto a sinistra del nostro quadrato
giallo al centro dello schermo.

Pagina 27 di 236

Coordinate diverse per sprite e playfield

Attenzione a non confonderti! Il sistema di coordinate per gli sprite (0-159 in
orizzontale, 0-95 in verticale) é diverso da quello usato per manipolare lo sfondo (il
Playfield) con comandi che vedremo piu avanti come pfpixel e pfread. Il Playfield
usa un sistema a “blocchi” molto piu piccolo (da 0 a 31 in orizzontale e da 0 a 10 in
verticale). Parleremo di questo nel Capitolo 4. Per ora, ricorda che playerOx e le
coordinate del Playfield sono due cose diverse!

I colori dell’ATARI 2600

Un colore sull’ Atari 2600 ¢ definito da un singolo byte (un valore da 0 a 255). La
tabella che segue mostra la tavolozza di 128 colori disponibile sullo standard
televisivo NTSC (Nord America, Giappone). | valori sono in esadecimale (un modo
piu compatto di scrivere i numeri). Per trovare un colore, incrocia la la riga della
Tonalita (la prima cifra, $X-) con la colonna della Luminosita (la seconda cifra, $-
Y). Ad esempio $1E & un bel giallo brillante ($1E corrisponde a 30).

Pagina 28 di 236

Capitolo 3 — Muovere I'Eroe

Il nostro piccolo eroe giallo & sul palco. E definito, colorato e sa dove stare. Ma ¢’¢ un problema:
e immobile, come una statua. Un gioco non e veramente un gioco finché il giocatore non puo
interagire. E il momento di dare al nostro personaggio il dono pili prezioso di tutti: il
movimento. In questo capitolo, collegheremo il mondo fisico al nostro universo digitale.
Prenderemo i segnali elettrici (virtuali) di un joystick e li trasformeremo in azioni sullo schermo.

3.1 - Ascoltare il Giocatore: Leggere il Joystick

Come fa il nostro programma a sapere se stai spingendo la levetta del joystick? 1l Batari Basic
rende questo compito incredibilmente semplice. Ci fornisce dei comandi speciali che, usati
all’interno di una condizione if, si comportano come delle domande dirette alla console.

| comandi principali per il primo joystick (chiamato joyO) sono:

* joyOup (su)

« joyOdown (giu)

* joyOleft (sinistra)

* joyOright (destra)

« joyoOfire (il pulsante di fuoco rosso)

Questi comandi diventano “veri” solo quando il giocatore sta effettivamente compiendo
quell’azione. Possiamo usarli per creare delle logiche molto semplici, come: “SE il giocatore
preme a destra, ALLORA fai qualcosa”.

3.2 = Primi Passi
Mettiamo subito in pratica questa conoscenza. Modifichiamo il nostro codice primo_gioco.bas
per far muovere il quadrato a destra e a sinistra. Aggiorna la sezione main in questo modo:
main

player0:

$11111111

$11111111

$11111111

$11111111
end

if joyOleft then playerOx = playerOx - 1
if joyOright then player0Ox = playerOx + 1

COLUPO = $1E ; colore del player0 (giallo)
playerOy = 50 ; posizione verticale (per ora fissa)

COLUBK = $86 ; colore di sfondo (blu)

drawscreen
goto main
Cosa c¢’¢ di nuovo?

« if joyOleft then playerOx = playerOx - 1: Questa € la nostra logica di movimento. Dice:
“SE il joystick e spinto a sinistra, ALLORA prendi il valore attuale di player0x, sottrai 1
e salva il nuovo risultato in playerOx”. Questo sposta lo sprite di un pixel a sinistra.

« if joyOright then playerOx = playerOx + 1: Fa la stessa cosa, ma aggiungendo 1 per
spostare lo sprite a destra.

Pagina 29 di 236

Operatori e Parentesi

Nel tuo viaggio, avrai costantemente bisogno di fare calcoli per muovere
personaggi, aggiornare timer o gestire punteggi. Batari Basic ti mette a disposizione
gli operatori matematici fondamentali, ma con alcune regole specifiche che devi
conoscere.

Gli Operatori di Base: + - *

+ (Addizione): Somma due numeri.

- (Sottrazione): Sottrae un numero da un altro.
* (Moltiplicazione): Moltiplica due numeri.
La Divisione Intera: /

Qui devi prestare molta attenzione. A differenza della matematica a cui sei abituato,
la divisione in Batari Basic € solo intera. Questo significa che il risultato perde
qualsiasi parte decimale.

10/ 2 dara come risultato 5 (corretto).

10/ 3 dara come risultato 3, non 3.333.... Il resto viene semplicemente scartato.
5/ 2 dara come risultato 2, non 2.5.

L'Ordine delle Operazioni e le Parentesi ()

Batari Basic segue le regole matematiche standard per l'ordine delle operazioni: la

moltiplicazione (*) e la divisione (/) vengono eseguite prima dell'addizione (+) e
della sottrazione (-).

risultato =5 + 2 * 3 dara 11 (perché 2 * 3 viene calcolato prima).

Per forzare un ordine diverso, devi usare le parentesi (). Tutto cio che ¢ all'interno
delle parentesi viene calcolato per primo.

risultato = (5 + 2) * 3 dara 21 (perché 5 + 2 viene calcolato prima).

La Magia dei Numeri Negativi

Hai appena scritto playerOx = playerOx - 1. Semplice, vero? Ma come fa un
programma che conosce solo numeri da 0 a 255 a capire cosa significa “sottrarre”?
La risposta € uno dei trucchi piu geniali della programmazione a 8 bit, chiamato
complemento a due. Pensa a un contachilometri che arriva solo fino a 255. Se sei a
0 e vai indietro di 1, cosa succede? Fa il giro al contrario e va a 255! Per la CPU
dell’ Atari, quindi, fare “0 — 1” € la stessa identica cosa che ottenere 255. Questo
significa che il numero 255 si comporta esattamente come -1. Non devi
memorizzare tutto, ma ricorda: i numeri “alti” (vicino a 255) possono comportarsi
come piccoli numeri negativi. E una tecnica fondamentale che useremo spesso!

Quando hai dubbi sull'ordine in cui verranno eseguiti i calcoli, usa sempre le

parentesi. Non costano nulla in termini di performance e rendono il tuo codice
infinitamente piu chiaro e meno soggetto a bug.

Pagina 30 di 236

Premi F5 per avviare I’emulatore. Ora hai il controllo! Ma come muovi il tuo eroe senza un vero
joystick? L’emulatore Stella ti permette di usare la tastiera del tuo computer per simulare i
joystick e i tasti della console. Di default, i controlli sono mappati come segue:

Giocatore 1 (joy0) - Tasti Freccia: Per muovere la levetta nelle quattro direzioni (su, giu,
sinistra, destra). Barra Spaziatrice: Per premere il pulsante di fuoco (joyOfire).

Giocatore 2 (joyl) - Tasti F, R, D, G: Per muovere la levetta (F=su, R=destra, D=giu,
G=sinistra). Tasto A (o tasto 0 del tastierino numerico): Per premere il pulsante di fuoco
(joy1fire).

Per provare il codice, usa i tasti freccia sinistra e destra sulla tua tastiera. Vedrai il tuo quadrato

Per controllare lo stato del joystick, non devi mai usare il segno di uguale (=). Il
comando stesso € la condizione.

if joyOright then ... < Corretto!
if joyOright = 1 then ... < Errato!

In Batari Basic, le condizioni if...then devono stare su una sola riga.

if joyOright then playerOx = playerOx + 1 < Corretto!

if joyOright then

playerOx = playerOx + 1 « Errato!
Questo errore di sintassi & una delle trappole pit comuni per chi inizia. Tienilo a
mente!
E se vuoi controllare se una direzione non é premuta? Usa il punto esclamativo !
(che significa NON):

if IjoyOfire then ... (SE il pulsante di fuoco NON ¢ premuto...)

c
(@]
<
@
=
Q.

3.3 = Il Ponte di Comando: Joystick e Interruttori della Console

L’ Atari 2600 era famosa per il suo iconico joystick nero con un singolo pulsante rosso. La
console supportava due giocatori, ognuno con il proprio controller, identificati nel nostro codice
come joyO (giocatore 1, collegato alla porta sinistra) e joyl (giocatore 2, collegato alla porta
destra).

Gli Interruttori della Console: Tasti “Software”

Oltre ai joystick, la console aveva una fila di interruttori metallici sul pannello frontale. Una
delle genialita dell’ Atari 2600 ¢ che la funzione di questi tasti non era “cablata” nell’hardware,
ma era definita dal software. Questo significa che un programmatore poteva decidere a cosa
servisse ogni interruttore, rendendoli estremamente versatili. Ecco i principali e il loro uso piu
comune:

Pagina 31 di 236

» switchreset (Game Reset): Solitamente usato per riavviare il gioco dall’inizio, tornando
alla schermata del titolo.

« switchselect (Game Select): Usato per ciclare tra le diverse modalita di gioco prima di
iniziare (es. 1 giocatore vs 2 giocatori, facile vs difficile).

« switchbw (Color / B&W): Usato per passare dalla modalita a colori a quella in bianco e
nero. Molti programmatori, in modo creativo, lo riutilizzarono come tasto di pausa!

« switchleftb / switchrightb (Difficulty A/B): Due interruttori per impostare la difficolta
(A=Advanced, B=Beginner) separatamente per il giocatore 1 e 2. Spesso cambiavano la
velocita dei nemici, la dimensione delle racchette (in Pong), o altri parametri di gioco.

Nell’emulatore Stella, questi interruttori sono mappati su tasti funzione > F1: Game Reset ; F2:
Game Select ; F3/ F4: Difficolta Giocatore 1/ 2 (Sinistra / Destra) ; F5: Colori / Bianco e Nero

L’Esperienza Autentica: L’ Atari 2600+

Mentre I’emulatore € uno strumento fantastico per lo sviluppo, nulla batte la sensazione di
giocare con un vero joystick. Oggi, grazie a console moderne come 1’ Atari 2600+, € possibile
rivivere quell’esperienza. Questa console ¢ una riproduzione fedele dell’originale, ma con
un’uscita HDMI per i televisori moderni. Viene fornita con un joystick CX40+ che ricrea
perfettamente il feeling del controller classico. Grazie a speciali “cartucce flash” (come la
Harmony Cartridge), potrai persino caricare e giocare i giochi che creerai con questo manuale
sulla tua console Atari 2600+, chiudendo il cerchio del tuo viaggio nel tempo!

3.4 - Clamping: | Muri Invisibili del Mondo

Prova a muovere il quadrato tutto a sinistra o tutto a destra. Sparisce! E uscito dai confini dello
schermo e si & perso nel vuoto digitale. Dobbiamo dargli dei limiti, come se ci fossero dei muri
invisibili ai lati del mondo. Questa tecnica si chiama clamping.

Modifichiamo le nostre righe if per aggiungere un controllo sui bordi, usando 1’operatore AND
“&&” che significa “E”.

if joyOleft && playerOx > 8 then playerOx = playerOx - 1
if joyOright && playerOx < 152 then playerOx = playerOx + 1

Ora le nostre condizioni sono piu complesse:
» “SE il joystick e a sinistra E la posizione playerOx & maggiore di 8, ALLORA muoviti a
sinistra.”
» “SE il joystick e a destra E la posizione playerOx & minore di 152, ALLORA muoviti a
destra.”
Questo impedisce al programma di aggiornare la posizione se lo sprite € gia arrivato al bordo,
bloccandolo efficacemente all’interno dell’area di gioco visibile. (I valori 8 e 152 sono scelti per
tenere conto della larghezza dello sprite).

Gli Operatori Logici && (E) e || (OPPURE)

Quando vogliamo verificare che due o piu condizioni sono vere
contemporaneamente abbiamo bisogno degli operatori logici.

&& (AND logico - E): Restituisce “vero” solo se tutte le condizioni che collega
sono vere. E perfetto per creare requisiti stringenti.

Esempio: if joyOleft && playerOx > 8 then ...

Pagina 32 di 236

Significato: “Esegui il comando solo SE il joystick ¢ a sinistra E la posizione x &
maggiore di 8.”

|l (OR logico - OPPURE): Restituisce “vero” se almeno una delle condizioni che
collega € vera. E ideale per controllare se si verifica una tra piu possibilita.

Esempio: if joyOleft || joyOright then ...

Significato: “Esegui il comando SE il joystick ¢ a sinistra OPPURE SE ¢ a destra.”
Questi operatori sono i mattoni fondamentali per creare una logica di gioco
complessa e reattiva.

Non Mischiare && e || nello Stesso if!

Questa & una delle limitazioni pit importanti e contro-intuitive di Batari Basic. A
differenza dei linguaggi moderni, non puoi usare && e || insieme all’interno della
stessa condizione if. Se lo fai, otterrai un comportamento imprevedibile o errato! Se
necessario devi sempre scomporre la logica in piu istruzioni if, una per ogni
“gruppo” di condizioni che ti servono.

Non usare piu di un || in un if!

A differenza di &&, non utilizzare mai piu di un || nello stesso if altrimenti il
programma non funzionera.

3.5 -Un Tocco di Stile: Riflettere lo Sprite con REFPO
Il nostro quadrato si muove, ma ¢ un po’ noioso. Diamo al nostro personaggio un po’ piu di vita.
Invece di un quadrato, disegniamo una semplice navicella. Sostituisci il blocco player0: con

questo:

playerO:

%01111100

%00111111

%01111100
end

P Costruire dal basso verso Ialto

La prima riga di dati (%01111100) disegna in realta la riga piu bassa dello sprite! Il
TIA (il chip grafico) infatti legge e disegna i dati dello sprite in ordine inverso
rispetto al codice batari basic.

Qui sotto hai I’esempio di un automobile. Il tuo codice per questa automobile
sarebbe:

playerO:

%01000010

%10100101

%11111111

%01111110 oT1]o[o[o[o[1o

%10000001 mWT " wm Petestml

%01000010 DAARAARE

%00111100 RCILRGRE
0o 0/1l/1({1|1|0|0

end

Pagina 33 di 236

Premi F5 e ricompila tutto. Ora, quando ti muovi, la “punta” della navicella ¢ sempre rivolta a
destra. Non sarebbe bello se si “girasse” per guardare a sinistra quando ci muoviamo in quella

direzione?

Possiamo farlo con un altro registro del TIA: REFPO (REFlect Player 0). Questo registro agisce
come un interruttore per uno specchio.

Molti registri del TIA, incluso REFPO, sono volatili. Questo significa che il loro
valore viene automaticamente azzerato (resettato a 0) dopo ogni drawscreen. Se
impostiamo REFPO solo quando premiamo il joystick, 1’effetto durera un solo
frame e poi svanira! Per mantenere un effetto persistente, come la riflessione dello
sprite, dobbiamo usare una variabile per “ricordare” lo stato di riflessione
desiderato. Poi, ad ogni ciclo del main loop, assegneremo il valore di quella
variabile a REFPO subito prima di disegnare lo schermo. Vedremo subito un
esempio di questa tecnica!

La lista dei registri volatili e non la trovi nell’appendice B.

Le Variabili a-z

Batari Basic ti mette a disposizione 26 variabili predefinite, nominate con una
singola lettera dalla a alla z, che possono contenere un valore da 0 a 255. Pensa a
loro come a 26 scatole vuote, etichettate da a a z, pronte per essere usate.

Una variabile & un contenitore per un'informazione che cambia durante I'esecuzione
del gioco. La posizione del giocatore, il suo punteggio, il numero di vite rimaste, il
tempo su un timer: tutti questi sono valori che devono essere costantemente
aggiornati.

L'Assegnazione (=): Mettere un Valore nella Scatola

L'operazione con cui si inserisce o si aggiorna un valore in una variabile si chiama
assegnazione. In Batari Basic (e in quasi tutti i linguaggi di programmazione),
I'assegnazione ¢ rappresentata dal simbolo di uguale (=), ma il suo significato &
molto diverso da quello matematico.

In programmazione, il segno = non significa "é uguale a", ma piuttosto "riceve il
valore di". E un'azione, un ordine che dice al computer: "Calcola tutto quello che c'é
a destra e metti il risultato finale nella variabile che si trova a sinistra".

Vediamo questo processo in azione, passo dopo passo, immaginando di eseguire le
seguenti operazioni:

a =4 ; Metti il numero 4 nella scatola 'a'.
b =a ; Prendi il valore che c'é dentro 'a’ (che é 4) e copialo nella scatola 'b'".
a=a+1; Calcola a+1 e metti il risultato in a
Assegnazione Semplice:
a =4 ; Metti il numero 4 nella scatola 'a'.
La variabile a ora contiene il valore 4.
Assegnazione da un'altra Variabile:

b =a ; Prendi il valore che c'e dentro 'a’ (che € 4) e copialo nella scatola 'b'.

Pagina 34 di 236

Ora sia a che b contengono il valore 4.
Assegnazione con Calcolo (L'operazione piu importante!):
a=a+1l

Questa riga ¢ il cuore della programmazione e va letta in due tempi, sempre da
destra verso sinistra.

Calcola la parte destra: Il computer prende il valore attuale di a (che ¢ 4), ci
aggiunge 1 e ottiene il risultato 5.

Assegna alla parte sinistra: Il computer prende questo risultato finale (5) e lo "salva"
nella variabile a, sovrascrivendo il vecchio valore.

Dopo questa operazione, a conterra 5, mentre b conterra ancora 4.
Assegnazione con Espressioni Complesse:
c=(a+h)*2
Anche qui, il processo e lo stesso:
Prendi il valore di a (5)
Prendi il valore di b (4).
Calcola I'espressione tra parentesi: 5+ 4 = 9.
Moltiplica il risultato per 2: 9 * 2 = 18.
Metti il risultato finale (18) nella variabile c.
Pensa sempre al = come a una freccia che va da destra a sinistra («). Prima il
computer risolve completamente I'espressione a destra, trasformandola in un singolo

numero, e solo alla fine deposita quel numero nella variabile a sinistra. Capire a
fondo questo meccanismo € la chiave per controllare il flusso e lo stato del tuo

Modifichiamo il nostro codice per gestire correttamente la riflessione.

rem Sprite che si specchia, clamp ai bordi
set romsize 2k

rem 'a' memorizza lo stato di riflessione (O=normale, 8=specchiato)
a=20

rem posizione iniziale x del player0
player0Ox = 80

main
rem --- Definizione Grafica ---
player0:
%$01111100
%$00111111
%$01111100
end

rem --- Logica di Movimento e Riflessione ---
if joyOleft && playerOx > 8 then playerOx = playerOx - 1 : a =0
if joyOright && playerOx < 152 then playerOx = playerOx + 1 : a = 8

rem --- Inizializzazione Registri prima del disegno ---

Pagina 35 di 236

REFPO = a

COLUPO = S1E
playerOy = 50 ;
COLUBK = $86 g

; Applica lo stato di riflessione memorizzato in 'a'
; colore del playerO (giallo brillante)

posizione verticale (per ora fissa)
colore di sfondo (blu ciano)

rem --- Disegno ---

drawscreen

goto main

Analizziamo il nuovo codice:
e a=0: All’inizio del programma, inizializziamo la nostra variabile a a 0. Questo significa
che lo sprite iniziera guardando nella sua direzione normale (in questo caso, a sinistra).

e ifjoyOleft.

.. - a=0: Quando ci muoviamo a sinistra, oltre a cambiare la posizione

playerOx, impostiamo la nostra variabile di stato a a 0. Lo sprite non deve essere riflesso.

e ifjoyOright ... : a = 8: Quando ci muoviamo a destra, impostiamo la nostra variabile a a
8. Questo “ricorda” al programma che lo sprite dovrebbe essere specchiato. Il valore 8 &
il numero che attiva la riflessione orizzontale in REFPO.

e REFPO = a: Questa ¢ la riga cruciale. Ad ogni singolo ciclo del main loop, poco prima di
chiamare drawscreen, diciamo al registro REFPO di assumere il valore che abbiamo
salvato nella nostra variabile a. Se a e 0, non ci sara riflessione. Se a € 8, lo sprite verra
specchiato per quel frame. In questo modo, I’effetto diventa stabile e persistente.

Premi F5. Ora la tua navicella si gira correttamente nella direzione in cui si muove, e rimane
girata! Hai appena imparato una delle tecniche fondamentali per gestire gli stati grafici sull’ Atari

2600.

Movimento Verticale e Diagonale
Ora che hai il pieno controllo, sperimenta con il movimento.

Movimento Verticale: Aggiungi la logica per muovere lo sprite su e giu. Ricorda di
usare playerQOy e di aggiungere il clamping anche per i bordi superiore e inferiore (i
limiti sono circa 10 e 90).

La Sfida della Diagonale: Riesci a far muovere lo sprite in diagonale?
(Suggerimento: Devi controllare se due direzioni sono premute
contemporaneamente, ad esempio if joyOup && joyOright then ...).

Cambia Velocita: Come potresti far muovere lo sprite piu velocemente? Prova a
cambiare playerOx = playerOx + 1 in playerOx = playerOx + 2

Pagina 36 di 236

Capitolo 4 — Costruire lo Scenario: Il Playfield

Il nostro eroe si muove liberamente, ma fluttua in uno spazio vuoto e senza confini.
Un’avventura ha bisogno di un mondo da esplorare. Ha bisogno di muri, pavimenti, piattaforme,
labirinti e ostacoli. In questo capitolo impareremo a usare uno degli strumenti piu potenti e
creativi dell’ Atari 2600: il Playfield. 1l Playfield € il nostro set di mattoncini digitali, una griglia
su cui possiamo disegnare lo sfondo statico del nostro gioco.

4.1 - La Geometria del Playfield
A differenza degli sprite (come playerQ), che sono oggetti dinamici e mobili, il Playfield e una
“tela” fissa. Ha delle caratteristiche molto particolari:

« E abassa risoluzione: E una griglia di blocchi larghi e squadrati. Ogni blocco del
Playfield e largo 4 pixel e alto 8 pixel.

* Non copre tutto lo schermo: Per limiti hardware e di batari basic, il Playfield occupa
solo la parte centrale dello schermo. Le fasce laterali, superiori e inferiori appartengono
al “background” o allo score (punteggio) e non possono essere utilizzate. Qui sotto un
esempio che mostra le dimensioni massime del playfield (in verde) rispetto alle
dimensioni massime dello schermo (in grigio scuro).

Per disegnare gquesto sfondo verde rettangolare, usiamo un blocco di codice che inizia con
I’etichetta playfield: e finisce con end.

Le Sottili Linee “Vuote” nel Playfield

Hai notato quelle sottili linee orizzontali che separano le righe di mattoncini del
playfield:? Non € un errore, ma una caratteristica intrinseca dell'hardware dell'Atari
2600. Il chip TIA, per ragioni di timing e semplicita hardware, inserisce
automaticamente una linea vuota di 1 pixel (del colore di sfondo, COLUBK) tra una
riga di Playfield e la successiva. Questo crea l'effetto visivo di "mattoni” separati da
una fuga, simile a un muro di mattoni reale. Esistono tecniche avanzate per
eliminare queste linee di separazione ma invece di vederle come un limite,
considerale un elemento stilistico caratteristico dell'estetica Atari 2600. Molti giochi
classici le hanno sfruttate per dare ai loro scenari un aspetto piu strutturato e
definito.

Pagina 37 di 236

4.2 — La Nostra Prima Stanza
Costruiamo una semplice cornice, una “stanza” che contenga il nostro eroe. La struttura del
nostro codice cambiera leggermente: d’ora in poi, definiremo la grafica all’inizio del file, per
avere una migliore organizzazione.

rem Il Mondo di Mattoni Digitali

set romsize 2k
a = 0 ; Variabile per la riflessione dello sprite

rem --- Definizioni Grafiche ---
playerO:

%01111100

$00111111

$01111100

end

playfield:

D19:0:0:0:9:0:0:0:9.9.9.9.9.9.9.9.9:0:0.0:0:0:0:0:0.9.0.0.9.0.0:¢

X6 60000000000000000000000000000 X
X6 50000000000000000000000000000 X
X6060000000000000000000000000000 X
X600000000000000000000000000000 X
X6 50000000000000000000000000000 X
X6 50000000000000000000000000000 X
X6000000000000000000000000060000 X
X60000000000000000000000000606000 X
X6 50000000000000000000000000000 X

):0.0.0.0.0.0:9:0:0:0:0:0:0:0:9.9.0.0.0,0.0.0.0.0.9:0:0:0:0:0:0:¢

end

rem --- Posizione iniziale del giocatore ---
player0Ox = 80

playerOy = 50

main
rem --- Inizializzazione Registri per il frame ---

COLUBK = $04 ; sfondo: Grigio scuro

COLUPF = $B6 ; playfield: Verde giungla

COLUPO = $1E ; player: Giallo brillante

REFPO = a ; Applica lo stato di riflessione
rem --- Logica di Gioco ---

if joyOleft && playerOx > 18 then playerOx = playerOx - 1 : a = 8

Pagina 38 di 236

if joyOright && playerOx < 142 then playerOx = playerOx + 1 : a = 0

rem --- Disegno ---

drawscreen

goto main

Cosa significano “X” e “.”? All’interno del blocco playfield:, questi simboli sono i nostri
mattoni: “X* significa “blocco acceso” ovvero disegna un mattone solido usando il colore di
COLUPF. “.” significa “blocco spento” ovvero lascia quell’area trasparente, mostrando il colore
di sfondo di COLUBK.

Premi F5 per compilare e lanciare il programma. Dovresti vedere il tuo personaggio all’interno
di una cornice verde. Hai appena costruito la tua prima struttura! Prova a muoverti: noterai che il
clamping ora ha piu senso, perché impedisce allo sprite di toccare i muri.

Fuori o dentro del main?

Hai notato che abbiamo spostato i blocchi playerQ: e playfield: all'inizio del file,
fuori dal main loop? C'¢ una ragione precisa e legata all'efficienza.

Definizioni Statiche: se nessuno le modifica, il compilatore Batari Basic necessita
di leggere le definizioni di grafica (player0:, playfield:) una sola volta. Non €
necessario (né efficiente) che il programma torni a leggere queste definizioni 60
volte al secondo. Posizionarle fuori dal main loop ci aiuta a mantenere la logica del
gioco (quella che cambia ad ogni frame) separata dalle risorse che sono “statiche”.

Registri Persistenti: Lo stesso principio vale per i registri TIA che non sono
volatili. Ad esempio, una volta che hai impostato il colore di sfondo (COLUBK) nel
tuo main loop, I'nardware non dimentichera questo valore. Potremmo spostare
I'assegnazione di COLUBK (e dei registri non volatili che non cambiano mai, come
il colore del Playfield COLUPF e del Player COLUPO) in una sezione di
inizializzazione all'inizio del programma, fuori dal ciclo main. In questo modo,
eseguiamo l'operazione costosa di assegnazione solo una volta, risparmiando cicli
preziosi in ogni frame!

Se un'informazione (come la grafica o un colore) non deve cambiare durante il
gioco, definiscila il pit lontano possibile dal cuore pulsante del main loop per
snellire il tuo codice e risparmiare preziosa CPU!

- m
4.3 — Davanti o Dietro? La Priorita con CTRLPF

Hai notato? Il tuo sprite si muove davanti ai muri del Playfield. Questo e il comportamento di
default. Ma cosa succede se vuoi che il tuo personaggio passi dietro a un pilastro o a un albero
per creare un effetto di profondita?

Puoi farlo! C’¢ un altro registro magico nel TIA chiamato CTRLPF (ConTRoL PlayField), che
agisce come un interruttore di priorita.

Aggiungi questa riga nella sezione di inizializzazione del tuo main loop, insieme agli altri
registri:

Pagina 39 di 236

CTRLPF = %00000100

Come funziona? Il valore %00000100 “accende” un bit specifico nel registro CTRLPF che dice
al TIA: “Disegna i blocchi del Playfield sopra gli sprite”. Per tornare al comportamento normale,
basta impostare CTRLPF = 0.

Premi F5. Ora, quando muovi lo sprite sopra un blocco X del Playfield, scomparira dietro di
esso! | blocchi del Playfield hanno la priorita. Questa tecnica e fondamentale per dare profondita
€ un aspetto piu “reale” ai tuoi mondi di gioco.

4.4 — Scontrarsi con i Muri: La Funzione collision

Il nostro eroe puo passare dietro i muri, ma non possiamo ancora usarli come ostacoli solidi.
Come facciamo a sapere se il nostro sprite sta toccando un muro?

Usando un’altra domanda speciale che possiamo fare al Batari Basic: il comando collision().
Questo comando ci permette di sapere se due oggetti grafici si stanno toccando, restituendo
“vero” se ¢’¢ un contatto. La sua sintassi €: if collision(oggettoA, oggettoB) then ...

Quando un personaggio si muove velocemente, potrebbe “passare attraverso” un muro per un
singolo frame. Per creare collisioni a prova di bomba, si usa una tecnica tanto semplice quanto
efficace: invece di respingere il giocatore, lo blocchiamo riportandolo all’ultima posizione
“sicura”.

4.5 — Muri Solidi con la Tecnica “Salva e Ripristina”
Mettiamo in pratica la gestione delle collisioni. Avremo bisogno di due variabili per salvare
’ultima posizione sicura del giocatore prima di ogni movimento. Ecco come fare:

1. Salva: All’inizio del main_loop, si salvano le coordinate del giocatore in x e y.
2. Muovi: Permetti al giocatore di muoversi come al solito.

3. Controlla e Ripristina: Dopo drawscreen, si controlla se ¢’¢ una collisione. Se si, Si riporta le
coordinate del giocatore ai valori salvati in x e y.

Ecco il codice completo e funzionante.

rem Il Mondo di Mattoni Digitali - con collisioni!

set romsize 2k
a = 0 ; Variabile per la riflessione dello sprite

rem --- Definizioni Grafiche ---
player0:

%01111100

%00111111

%01111100

end

playfield:

):0:0:9:9:9.0.9:9:9:9:9.0.0.0:0:9.9:0.9.0.0:0.:9.9:0.0.0:0:0:0.0:¢

Pagina 40 di 236

X000000000000000000000000000000 X
X6 60000000000000000000000000000 X
X6 60000000000000000000000000000 X
X000000000000000000000000000000 X
X000000000000000000000000000000 X
X6 60000000000000000000000000000 X

D19:0:9:9:9:0:9:9:9:9.9.9.9.9.9.9.9:0:0:9:0:0:0:0:0.9:0.9.0.0.0:¢

end

rem --- Posizione iniziale del giocatore ---
player0Ox = 80

playerOy = 50

main

rem 1. SALVA la posizione sicura

x = playerOx

y = playerQOy

rem --- Inizializzazione Registri ---

COLUBK = $04 ; Grigio scuro

COLUPF = $B6 ; Verde giungla

COLUPO = $1E ; Giallo brillante

REFPO = a ; Applica lo stato di riflessione

rem 2. MUOVI il personaggio

if joyOleft && playerOx > 18 then playerOx = playerOx - 1 : a = 8
if joyOright && playerOx < 142 then playerOx = playerOx + 1 : a = 0
if joyOup && playerOy > 10 then playerOy = playerOy - 1

if joyOdown && playerOy < 85 then player0Oy = playerOy + 1

rem --- Disegno ---

drawscreen

rem 3. CONTROLLA e RIPRISTINA

if collision(player0, playfield) then playerOx = x : playerQOy =y

goto main

Premi F5. Prova a shattere contro i muri da qualsiasi direzione. Vedrai che il tuo personaggio si
ferma di colpo, come se fossero solidi. Hai appena implementato la fisica di base del tuo mondo!

Pagina 41 di 236

"Racing the Beam" e I'Ordine degli Eventi

Come fa I'Atari 2600 a sapere che due oggetti si toccano? La risposta & legata al
modo stesso in cui la console disegna I'immagine sullo schermo.

Come abbiamo accennato, I'Atari 2600 non ha abbastanza memoria per costruire
un'intera immagine e poi inviarla al televisore. Deve letteralmente "inventare"
I'immagine riga per riga, in perfetta sincronia con il raggio di elettroni (il "beam")
del televisore. Questo processo € chiamato "Racing the Beam™ (correre contro il
raggio).

Il chip TIA non si limita a disegnare; mentre il raggio passa su un pixel, il

TIA controlla se piu di un oggetto sta cercando di essere disegnato in quel preciso
punto. Se questo accade, il TIA "alza una bandierina”, ovvero imposta un bit di
collisione nel suo hardware.

Perché collision() va dopo drawscreen?

Prima di drawscreen: | bit di collisione contengono ancora le informazioni relative
al frame precedente. La CPU non ha ancora chiesto al TIA di disegnare nulla di
nuovo, quindi il TIA non ha avuto modo di rilevare nuove collisioni basate sulle
nuove posizioni degli oggetti.

Durante drawscreen: La CPU passa le nuove coordinate (playerOx, playerQy, ecc.) al
TIA. Mentre il TIA disegna il nuovo frame, riga per riga, aggiorna i suoi bit di
collisione in tempo reale.

Dopo drawscreen: | bit di collisione del TIA sono finalmente aggiornati con le
informazioni del frame che hai appena visto disegnare. Questo é il momento giusto
per interrogare I'nardware con la funzione collision() e ottenere una risposta
accurata.

Pensa al main loop in questo ordine logico:

Calcola: Aggiorna le posizioni degli oggetti.

Disegna: Chiama drawscreen per far si che il TIA disegni il nuovo frame e rilevi le
collisione.

Controlla: Chiama collision() per leggere i risultati del disegno appena completato.
Se inverti questo ordine, il tuo gioco avra sempre un frame di ritardo nel rilevare le
collisioni, causando bug e comportamenti imprevedibili.

Libera il tuo Architetto Interiore

Ora che i muri sono solidi, & il momento di renderli piu interessanti.

Costruisci un Labirinto: Modifica il blocco playfield: per creare un semplice
labirinto con dei corridoi.

Pagina 42 di 236

Capitolo 5 — La Voce della Console: Suoni ed Effetti Speciali

Il nostro mondo ora ha un aspetto: ¢’¢ un eroe, ci sono dei muri, ¢’¢ un’avventura che aspetta di
essere vissuta. Ma € un’avventura silenziosa. Manca il beep di un laser, il boop di un oggetto
raccolto, il crunch di una collisione. Un gioco senza suono & un gioco a meta.

In questo capitolo, impareremo a dare una voce all’ Atari 2600, manipolando i suoi registri audio
per creare effetti sonori. Nonostante la sua apparente semplicita, il chip TIA nasconde un
generatore di suoni sorprendentemente versatile. E ora di fare un po’ di rumore!

5.1 - L’Anatomia del Suono Atari

11 TIA, il nostro chip “artista”, non si occupa solo della grafica. E anche un musicista. Ha due
canali audio indipendenti (Canale 0 e Canale 1), il che significa che puo produrre due suoni
diversi contemporaneamente.

Ogni canale ¢ controllato da un set di tre registri, tre “manopole” che dobbiamo regolare per
produrre un suono:

e AUDV (Audio Volume): La Manopola del Volume. Controlla quanto forte e il suono,
con un valore da 0 (silenzio totale) a 15 (volume massimo). Per il Canale O si usa
AUDVO, per il Canale 1 AUDV1.

e AUDC (Audio Control): La Manopola del Timbro. Controlla la “voce” o la “texture”
del suono, con un valore da 0 a 15. Ogni numero seleziona una forma d’onda diversa,
producendo suoni che vanno da toni puri e cristallini (come un flauto) a suoni distorti e
“rumorosi” (come il motore di un’auto o un’esplosione).

e AUDF (Audio Frequency): La Manopola dell’Intonazione. Controlla la frequenza,
OVVvero quanto una nota € acuta o grave, con un valore da 0 a 31. Attenzione: qui le cose
funzionano al contrario di come ci si aspetterebbe! Valori bassi producono suoni piu
acuti, mentre valori alti producono suoni piu gravi.

Per produrre un suono sul Canale 0, dobbiamo impostare tutti e tre i registri: AUDVO, AUDCQO, e
AUDFO.

Nell’appendice D troverai tutte le informazioni necessarie per scegliere 1 valori che fanno al caso
tuo!

[| suoni non si Fermano da Soli!

I registri audio sono persistenti. Una volta che hai impostato un suono, il TIA
continuera a produrlo all’infinito, anche nei frame successivi! E come premere un
tasto di un organo che non torna piu su. Per fermare un suono, 1’unico modo ¢
riportare il suo volume a zero: AUDVO = 0. Ricordalo sempre!

5.2 - Il “Sound Timer”: Creare Effetti Sonori a Tempo

Come facciamo a creare un suono breve, come quello di uno sparo, che duri solo una frazione di
secondo e poi si fermi? Non possiamo semplicemente accenderlo e spegnerlo subito dopo,
perché il nostro main loop é troppo veloce!

La soluzione & un pattern di codice fondamentale: il “Sound Timer”. E un semplice timer
software, un contatore alla rovescia che usa una delle nostre variabili. L’idea ¢ questa:

Pagina 43 di 236

* Quando vogliamo che il suono inizi, attiviamo 1’audio e carichiamo una variabile (il
nostro timer) con un numero (es. 10). Questo numero rappresenta per quanti frame il
suono durera.

« Ad ogni ciclo del main loop, decrementiamo il timer di 1.

* Quando il timer raggiunge lo zero, spegniamo il suono impostando il volume a 0.

Prima di vedere un esempio concreto, introduciamo un concetto importantissimo: le subroutine.

5.3 - L’Arte dell’Ordine: gosub e return
Man mano che i nostri programmi crescono, il main loop puo diventare disordinato. Per
mantenere il codice pulito e organizzato, useremo le subroutine. Una subroutine € un blocco di
codice separato che esegue un compito specifico (come “sparare” o “riprodurre un suono”). Per
usare una subroutine abbiamo bisogno di due istruzioni fondamentali, gosub e return:
» gosub <etichetta>: Dice al programma: “Vai a eseguire il codice che si trova all’etichetta
<etichetta>, ma ricorda da dove sei partito”.
* return: Si mette alla fine della subroutine e dice: “Ho finito, torna al punto da cui eri
partito”.
Questo ci permette di organizzare il codice in blocchi logici e riutilizzabili.

5.4 —Collisione con Suono

Prendiamo il codice del capitolo precedente e aggiungiamo un effetto sonoro ogni volta che il
giocatore si scontra con un muro. Avremo bisogno di una nuova variabile (useremo s) per il
nostro sound timer. Gia che ci siamo cambiamo un po’ il playfield.

rem Collisione con Suono
set romsize 2k

a
S

0 ; Variabile per la riflessione
0 ; Variabile per il sound timer (s=sound)

rem --- Definizioni Grafiche ---
playerO:
%01111100
%00111111
%01111100
end
playfield:
P:9:9:9.90:0:9.9.9:9.:9.9.9.:9:9.0.0.9.9.0.¢
200000 8000000000000 X
200000 8000000000000 X
X #HKooooooooo X..X
?80 0000000000000 0 X..X
8000000000000 XXXX. .X
28000000000000000000 X
2800 0X00000000000000 X
D:9:0:0:0 U KAXKXKXXX
®0 000000000000 o oooo
KXXXXXXXXXXXXXX o oo e
end
rem --- Posizione iniziale player0 ---

playerOx = 80
playerOy = 50

main

rem 1. SALVA la posizione sicura
player0Ox
playerOy

X
Yy

Pagina 44 di 236

rem --- Gestion
if s > 0 then s

e del Sound Timer ---
=8 =1

if s = 0 then AUDVO = 0 ; Spegni il suono quando il timer scade

rem --- Inizial

COLUBK = $04 ;
COLUPF = $B6 ;
COLUPO = S$1E ;
REFPO = a ;

rem 2. MUOVI il
if joyOleft &&
if joyOright s&s&
if joyOup && pl

izzazione Registri ---

; Grigio scuro

Verde giungla
Giallo brillante

; Applica lo stato di riflessione

personaggio

playerOx > 18 then playerOx = playerOx - 1 : a =
playerOx < 142 then playerOx = playerOx + 1 : a =0
ayerOy > 10 then playerOy = playerOy - 1

[ee)

if joyOdown && playerOy < 85 then playerOy = playerOy + 1

rem --- Disegno
drawscreen

rem 3. CONTROLLA, RIPRISTINA e SUONA

if collision(pl
goto main

rem --- SUBROUT
play hit sound

s =5

AUDVO

AUDCO = 2 8
AUDFO = 30 5
return

ayer0, playfield) then playerOx = x : playerOy = y : gosub play hit sound

INE PER IL SUONO ---

; Durata del suono: 5 frame
; Volume

; Timbro "rombo" cupo

; Intonazione molto grave

Premi F5. Hai appena sincronizzato grafica, input e audio! Come vedi, la subroutine
play_hit_sound viene chiamata quando avviene la collisione attraverso gosub. Vengono eseguite
le istruzioni “dentro” a play_hit_sound che si conclude con return che riporta il flusso di
esecuzione subito dopo il gosub play_hit_sound (ovvero I’istruzione immediatamente successiva

sara goto main).

Si pu0 usare un gosub dentro ad una subroutine chiamata da un gosub?

Si. Ma non andare mai oltre tre “livelli” di gosub o il programma potrebbe non
funzionare correttamente. Ad esempio questo codice (due livelli di gosub) &
corretto:

main
; ... logica del gioco ...
gosub subl ; viene eseguita tutta la subl
drawscreen

goto main

subl
; ... logica della subroutine 1 ...
gosub sub2 ; viene eseguita tutta la sub2
; ... continuazione logica della subroutine 1 ...

return ; ritorna al main

sub?2

Pagina 45 di 236

; ... logica della subroutine 2 ...

return ; ritorna alla sub 1

Diventa un Sound Designer!
E il momento di sperimentare con i suoni.

Sperimenta con il Timbro: Nella subroutine, prova a cambiare il valore di
AUDCO0. Usa AUDCO = 12 per un suono piu puro, da “raccolta oggetto”. Usa
AUDCO = 14 per un ronzio, ottimo per un motore.

Cambia I’Intonazione: Gioca con AUDFO. Prova valori piu alti (es. 20) per un
suono piu grave, o piu bassi (es. 5) per un suono ancora piu acuto.

Effetto Sonoro di Collisione: Riesci a produrre un suono diverso in base alla
direzione del player0?

Pagina 46 di 236

Capitolo 6 — Animazione a Frame Multipli

Il nostro eroe si muove, esplora mondi e interagisce con gli oggetti. Ma c¢’¢ ancora qualcosa che
non va: si muove in modo rigido, come un pezzo degli scacchi. Manca I’illusione della vita, quel
dettaglio che trasforma una semplice forma in un personaggio che corre, salta o attacca.

In questo capitolo, impareremo come animare gli oggetti grafici.

6.1 — Oltre lo Sprite Statico

Come funziona un cartone animato? Non é una singola immagine che si muove, ma una rapida
successione di disegni leggermente diversi tra loro. Il nostro cervello, ingannato da questa
velocita, percepisce il movimento come fluido.

In Batari Basic, possiamo fare esattamente la stessa cosa. Invece di avere un solo blocco
player0:, possiamo definirne diversi, ognuno rappresentante un “fotogramma” (o frame) della
nostra animazione.

L’idea di base:

e Disegniamo diversi sprite per il nostro personaggio (es. gamba destra avanti, gambe
unite, gamba sinistra avanti).

e Nel nostro main loop, mostriamo questi sprite in rapida successione.

e I risultato: il nostro eroe sembrera correre!

6.2 — La Tecnica del “Cartone Animato”: Alternare le Immagini con gosub

I modo piu semplice per gestire pit frame € creare una subroutine grafica per ogni disegno.
Immaginiamo di voler creare un’animazione di corsa a due frame. Possiamo definire
anim_frame_1 e anim_frame_2, ognuna contenente un blocco player0: diverso, e chiamarle con
gosub.

Ma come decidiamo quale subroutine chiamare? Se le alternassimo a ogni ciclo del main loop,
I’animazione sarebbe troppo veloce e tremolante (60 cambi al secondo!). Abbiamo bisogno di un
metronomo.

6.3 — Il Metronomo del Codice: Usare i Timer per il Ritmo
Per controllare la velocita dell’animazione, usiamo un semplice contatore, una variabile che
incrementiamo a ogni ciclo del main loop. La struttura di base del codice ¢ la seguente:

f = 0 ; Variabile per il timer di animazione (f=frame)

main loop
rem ... logica del gioco ...

f=f+1

gosub animate player
drawscreen

goto main loop

animate player

rem Se il timer & sotto 10, mostra il primo frame
if £ < 10 then gosub anim frame 1

rem Se il timer €& tra 10 e 19, mostra il secondo frame
if £ >= 10 then gosub anim frame 2

rem Se il timer arriva a 20, azzeralo per ricominciare il ciclo

if £ = 20 then animation timer = 0
return

Pagina 47 di 236

anim frame 1
rem ... disegno animazione 1 ...

return

anim frame 2
rem ... disegno animazione 2 ...

return

Questo codice mostra il frame_1 per 10 cicli di gioco, poi il frame_2 per altri 10 cicli, e poi
ricomincia. L’animazione ora ha un ritmo controllato!

6.4 — Creare un’Animazione di Corsa
Mettiamo tutto insieme. Modifichiamo il nostro programma di movimento per far correre il
nostro personaggio, aggiungendo anche un frame “statico” per quando ¢ fermo. VVogliamo:
« Creare due frame di animazione per la corsa e uno per quando il personaggio e fermo.
« Usare un timer per alternare i frame della corsa a un ritmo credibile.
» Mostrare il frame statico e azzerare il timer quando il personaggio si ferma.
rem Animazione di Corsa

set romsize 2k

; Variabile per la riflessione

0
f = 0 ; Variabile per il timer di animazione (f=frame)
main loop
gosub handle input

gosub animate player

playerOx = x

playerOy =y

COLUPO = S$SEA

COLUBK = $84

REFPO = a

drawscreen

goto main loop

rem —--- SUBROUTINES DI GIOCO —---
handle input

rem Posizioni iniziali se non definite

if x = 0 then x = 80 : y = 50

if joyOleft && x > 8 then x = x - 1 : a = 8

Pagina 48 di 236

if joyOright && x < 152 then x = x + 1 : a =0

return

animate player
rem Se il giocatore si muove, incrementa il timer

if joyOleft || joyOright then £ = £ + 1

rem Se il giocatore & fermo, mostra il frame statico e azzera il timer

if !joyOleft && !joyOright then gosub anim frame static : £ = 0 : return

rem Logica di alternanza frame
if £ < 10 then gosub anim frame 1

if £ >= 10 then gosub anim frame 2

if £ >= 20 then £ = 0 ; Azzera il timer per ricominciare il ciclo
return
rem —--- DEFINIZIONI GRAFICHE ---

anim frame static ; Frame per personaggio fermo
player0:
%0010100
%0010100
$0010100
$1001001
%0111110
%0001000
%0011100
$0011100

end

return

anim frame 1 ; Corsa - Frame 1
player0:
%0010100
%0010100
$0010100
$1001000
%0111111
50001001
$0011100
$0011100

end

return

Pagina 49 di 236

anim frame 2 ; Corsa - Frame 2
playerO:
50010000
$0010000
$0010100
$1001001
%0111110
$0001000
$0011100
50011100

end

return

Premi F5. Il tuo personaggio ora é fermo, in una posa statica. Ma quando spingi il joystick a dest
ra o a sinistra, iniziera a “correre”, alternando i due frame di animazione!

Simulare IF-ELSE con goto e le Etichette

- m
Hai imparato a usare if ... then gosub... per eseguire una subroutine se una
condizione &€ vera. Ma cosa succede se vuoi fare una cosa se la condizione ¢ vera, e
un’altra cosa completamente diversa se ¢ falsa? I linguaggi moderni usano una

_ struttura chiamata if-else per questo. Sebbene in Batari Basic esiste la possibilita di
usare else, € meglio non usarlo perché il suo funzionamento non & sempre corretto.
Tuttavia possiamo ottenere lo stesso risultato combinando if, goto e le etichette
(label).

Immagina di voler eseguire pezzi di codice diversi in base al valore della variabile a,
senza scomodare i gosub. Ecco come fare:

if a = 0 then goto case a 0

if a = 1 then goto case a 1

; .. altri casi ..

goto end case a ; se nessuna condizione vera

; salto oltre il codice per i vari casi a=0, a=1,

case a 0

;... codice per il caso a = 0

goto end case a

case a1
;... codice per il caso a =1
goto end case a

;... altri casi ...

end case_a

; qui continua il codice del programma

Pagina 50 di 236

La tecnica consiste nel “saltare” ad un blocco di codice specifico per ogni
condizione che ci interessa. Basta utilizzare delle label con dei nomi diversi. Da tutti
i pezzi di codice poi si salta al punto dove prosegue il programma.

Sperimenta con le Tue Abilita di Animatore

Aggiungi piu Frame: Riesci a creare un’animazione di corsa piu fluida usando 3 o
4 frame invece di 2? Dovrai modificare la logica nella subroutine animate_player
per gestire piu stati del timer.

Animazione Verticale: 1l nostro eroe corre solo a destra e a sinistra. Prova a creare
un set di sprite completamente diverso per quando si muove in alto e in basso.
(Suggerimento: Avrai bisogno di un if joyOup || joyOdown then ... e di nuove
subroutine grafiche).

Animazione di “Idle”: Molti giochi hanno un’animazione per quando il
personaggio e fermo (es. respira, guarda intorno). Modifica la subroutine
anim_frame_static per alternare due frame molto simili tra loro, dando I’impressione
che il personaggio sia vivo anche da fermo.

Pagina 51 di 236

Capitolo 7 — Progetto Guidato: “Fuga dal Castello Digitale”

In questo capitolo, creeremo un mini-gioco chiamato “Fuga dal Castello Digitale”. L’obiettivo ¢
semplice, ma per realizzarlo dovremo usare quasi tutto cio che abbiamo imparato: la gestione
dell’input, una semplice A, animazioni, suoni, collisioni, la gestione dello stato di gioco e...
un’altro oggetto grafico di cui parleremo nel dettaglio piu avanti ma che ora ci serve, la “ball”!

7.1 - Fase 1: La Mappa del Tesoro — Pianificazione e Design
Prima di scrivere una sola riga di codice, un buon game designer pianifica gli elementi essenziali
del gioco.
« Genere: Mini-avventura a schermata singola.
« Obiettivo: Raccogliere una chiave per aprire una porta e fuggire.
» Personaggi:
— player0: L’Eroe, controllato dal giocatore, con animazioni di movimento.
— playerl: Il Guardiano, un nemico animato con una semplice IA di
pattugliamento.
* Logica di Gioco:
— L’Eroe deve toccare la Chiave (rappresentata dall’oggetto ball) per raccoglierla,
con un suono di conferma.
— Una volta raccolta la Chiave, I’Eroe deve raggiungere la Porta (un’area del
castello) per vincere.
— Se il Guardiano tocca I’Eroe, il gioco finisce (Game Over).
— L’Eroe e il Guardiano producono suoni di passi. Le collisioni e gli eventi di
vittoria/sconfitta hanno effetti sonori dedicati.

7.2 — Fase 2: Le Fondamenta — Mappa delle Variabili e Grafica
La prima cosa da fare ¢ pianificare come useremo le nostre preziose 26 variabili a singola lettera.
Assegnare a ogni lettera un ruolo chiaro fin dall’inizio ¢ fondamentale per non perdersi. Poi
definiamo la grafica del playfield.

rem Fuga dal Castello Digitale

set romsize 4k ; Imposta la dimensione della cartuccia virtuale a 4 kilobyte, necessaria per co
ntenere tutto il codice.

rem --- Mappa delle Variabili ---

a = 0 ; Memorizza lo stato di riflessione dell'Eroe (0 = guarda a destra, 8 = guarda a sinistra
, specchiato).

b =0 ; Timer per l'animazione dell'Eroe. Un contatore che cicla per decidere quale frame di an
imazione mostrare.

c = 0 ; Timer per l'animazione del Guardiano. Simile a 'b', ma per il nemico.

d = 0 ; Direzione del Guardiano (0 = si muove a destra, 1 = si muove a sinistra). Usato dall'IA

di pattugliamento.

e = 0 ; Stato del gioco (gamestate): O=Inizializza, 1=In Gioco, 2=Vittoria, 3=Sconfitta. Il "ce
rvello" del gioco.

f = ; Flag per la chiave: 0 = non posseduta, 1 = posseduta.
; Flag di movimento: 1 se il giocatore sta muovendo il joystick, 0 se & fermo.
; Sound Timer per il Canale Audio O (usato per 1'Eroe).
; Sound Timer per il Canale Audio 1 (usato per il Guardiano e le collisioni).
; Posizione orizzontale (coordinata X) corrente dell'Eroe.
; Posizione verticale (coordinata Y) corrente dell'Eroe.
; Variabile temporanea per salvare l'ultima posizione X "sicura" dell'Eroe.
; Variabile temporanea per salvare l'ultima posizione Y "sicura" dell'Eroe.
Posizione orizzontale (coordinata X) corrente del Guardiano.
Posizione verticale (coordinata Y) corrente del Guardiano.

o

SN < oK X0 e
L | | (T |
O OO OO oo oo

’
’

rem -- 1l playfield definisce la grafica statica del castello e non cambia durante il gioco --
playfield:

Pagina 52 di 236

):0:9:9:9:9.0.9:9:9.9,9.9.0.0:0:9.9.0.9.0.0:0.9.9.0.0.0:0:0.:9.0:¢

...... X00000000000000000000000 0%
...... Xooooooo0000000000000000 0%
X Mo ooooooo0000000000000 X..X
X000000000000000000000000000 X..X
X000000000000000000000000 XXXX..X
X6 60000000000000000000000000000 X
X6 06%60000000000000000000000000 X
XHKIFF o 00000000000 000000000 XXXXXX
X0000000000000000000000000 Xooooo
)19:0:0:9:0:0:0:9:9.9.9.0.9.9.9.0,0:0:0.0:0:0:0:0.0.0. G

end

7.3 — Fase 3: La Macchina a Stati — Il Cervello del Gioco

Ora scriviamo il main_loop, il “centralino” che gestisce il flusso del gioco, e tutte le subroutine
di stato. Il main_loop controlla la variabile e (gamestate) e chiama la subroutine appropriata per
ogni stato del gioco.

main loop ; Il cuore del gioco, un ciclo infinito che si ripete circa 60 volte al secondo.

if e = 0 then gosub state init game ; Se il gioco e nello stato 0, esegui la routine di inizia
lizzazione.

if e = 1 then gosub state gameplay ; Se il gioco e nello stato 1, esegui la logica principale d
el gameplay.

if e = 2 then gosub state win ; Se il gioco & nello stato 2, mostra la schermata di vittor
ia.

if e = 3 then gosub state game over; Se il gioco e nello stato 3, mostra la schermata di game o
ver.

goto main loop ; Torna all'inizio del ciclo per il prossimo frame.

rem ========= SUBROUTINES DI STATOQ =========

state init game ; Questa subroutine viene eseguita solo una volta all'inizio di ogni partita.

x = 30 : y =80 ; Imposta la posizione di partenza dell'Eroe.

z = 100 : w = 40 ; Imposta la posizione di partenza del Guardiano.
f =20 ; Resetta lo stato della chiave (non posseduta).
e =1 ; Cambia lo stato del gioco a "In Gioco".

i=20 ; Resetta i1 flag di movimento del giocatore.

s =0 ; Resetta 1 timer dei suoni.

return ; Torna al main_loop.

state gameplay ; Questa subroutine contiene tutta la logica del gioco attivo.

gosub handle input ; Legge il joystick e gestisce il movimento/animazione dell'Eroe.
gosub update enemy ai ; Muove e anima il Guardiano.

gosub update sounds ; Aggiorna i timer dei suoni e 1li spegne se necessario.

gosub draw_world ; Disegna tutti gli elementi grafici sullo schermo.

gosub check collisions ; Controlla tutte le interazioni tra gli oggetti.

return ; Torna al main_ loop.

state win ; Schermata di vittoria.
if s = 0 then gosub play win sound ; Suona l'effetto di vittoria, ma solo una volta.

COLUBK = $9E ; Imposta lo sfondo a verde.

playerOy = 200 : playerly = 200 ; Nasconde i1 personaggi spostandoli fuori dallo schermo.

if s > 1 then s = s - 1 else AUDVO = 0 ; Fa durare il suono di vittoria per il suo tempo, poi 1
O spegne.

drawscreen ; Continua a disegnare lo schermo per evitare il "roll".

if joyOfire then e = 0 ; Se il giocatore preme fuoco, riavvia il gioco tornando allo
stato di inizializzazione.

return
state game over ; Schermata di Game Over.

if s = 0 then gosub play lose sound ; Suona l'effetto di sconfitta, ma solo una volta.

COLUBK = $44 ; Imposta lo sfondo a rosso.

playerOy = 200 : playerly = 200 ; Nasconde i personaggi.

if s > 1 then s = s - 1 else AUDVO = 0 ; Fa durare il suono di sconfitta per il suo tempo, poi
lo spegne.

drawscreen ; Continua a disegnare lo schermo.

if joyOfire then e = 0 ; Se il giocatore preme fuoco, riavvia il gioco.

return

Pagina 53 di 236

7.4 — Fase 4: Dare Vita al Mondo - Input, IA, Suoni e Disegno

E il momento di riempire le subroutine di gioco. Iniziamo con ’input del giocatore, I’TA del

guardiano, la gestione dei suoni e il disegno del mondo.

Em S=————= GUEROUIIINIS DI GIOC0 ===

handle input

rem -- salviamo la posizione attuale dell'eroe per la logica "salva e ripristina" --

u=zx:vV =y

i =0 ; All'inizio di ogni frame, assumiamo che il giocatore sia fermo.

rem -- Legge il joystick e aggiorna la posizione e la riflessione dell'Eroe --

if joyOleft && x > 0 then x =x -1 :a =8 :1=1 ; Se premi sinistra e
uoviti a sinistra, imposta la riflessione e il flag di movimento.

if joyOright && x < 159 then x = x + 1 : a =0 : 1 =1 ; Se premi destra...

if joyOup && yv > 0 theny =y -1 : 1 =1 ; Se premi su...

if joyOdown && y < 95 theny =y + 1 : 1 =1 ; Se premi giu...

rem -- Gestisce l'animazione dell'Eroe e il suono dei passi --

if i =1 then b =b + 1 : if b > 20 then b = 0 ; Se l'eroe si sta muovendo,

imer di animazione.
if i = 1 && s = 0 then gosub play hero step sound ; Se si muove e
iproduci il suono del passo.

if i = 0 then b = 0 ; Se 1l'eroe & fermo, resetta il suo timer di animazione

me statico.
return

update enemy ai

il canale

non sei al bordo, m

incrementa il suo t

audio 0 & libero, r

per mostrare il fra

rem -- Logica di pattugliamento semplice: si muove avanti e indietro tra z = 20 e 120 --

if d =0 then z = z + 1 ; Se la direzione & 0 (destra), incrementa la posizione X.

if z > 120 then d = 1 ; Se raggiunge il limite destro, cambia direzione.

if d =1 then z = z - 1 ; Se la direzione e 1 (sinistra), decrementa la posizione X.

if z < 20 then d = 0 ; Se raggiunge il limite sinistro, cambia direzione.

rem -- Gestisce l'animazione del Guardiano e il suono dei passi --

c=c¢c+ 1 : 1if ¢ > 20 then ¢ = 0 ; Incrementa il timer di animazione del guardiano.

if t = 0 then gosub play enemy step sound ; Se il canale audio 1 & libero, riproduci un passo
return

update sounds

rem -- Gestisce 1 contatori alla rovescia per entrambi i canali audio --

if s > 0 then s = s - 1 else AUDVO = 0 ; Decrementa il timer del canale O.

e il volume.

if £t > 0 then t = t - 1 else AUDV]1 = 0 ; Decrementa il timer del canale 1.

e il volume.
return

draw world

Se arriva a 0, spegn

Se arriva a 0, spegn

rem -- Seleziona e chiama la subroutine grafica corretta per 1'Eroe in base al suo timer di ani

mazione 'b' --
if b = 0 then gosub player(O static
if b > 0 & b <= 10 then gosub player(0 framel
if b > 10 then gosub player0O frame2

rem -- Seleziona e chiama la subroutine grafica corretta per il Guardiano in base al timer 'c'

if ¢ <= 10 then gosub playerl framel

if ¢ > 10 then gosub playerl frame2

rem —-- Posiziona la chiave (la 'ball') sullo schermo. Se & stata raccolta

i dall'area visibile --

(£=1),

la sposta fuor

ballheight = 4 : if £ = 0 then ballx = 120 : bally = 50 else bally = 150

rem -- Aggiorna le posizioni finali degli sprite e imposta tutti i registri TIA prima di disegn
are --

playerOx = x : playerOy = y : playerlx = z : playerly = w

COLUBK = $08 : COLUPF = $1A : COLUPO = $AE : COLUPLl = $44 : REFPO = a

Pagina 54 di 236

drawscreen ; Comando che dice al TIA di disegnare l'intero frame.
return

7.5 —Fase 5: Le Regole del Gioco — Collisioni e Logica

Infine, implementiamo la logica che controlla le interazioni: la collisione con il guardiano, I’urto
contro i muri, la raccolta della chiave e la fuga finale. E terminiamo con le subroutine dei suoni e
delle animazioni.

check collisions

rem -- Controlla se 1'Eroe tocca il Guardiano. Se si, suona un suono e imposta lo stato a Game
Over --

if collision(player0, playerl) then gosub play hit sound : e = 3 : s =0

rem -- Controlla se 1'Eroe tocca i1 muri del Playfield. Se si, ripristina la sua posizione e suo
na un suono --
if collision(player0, playfield) then x = u : y = v : 1f t = 0 then gosub play hit sound

rem -- Controlla se 1'Eroe tocca la chiave (la 'ball'). Se si, imposta il flag 'f' a 1 e suona
un suono --
if £ = 0 && collision(playerO, ball) then f = 1 : gosub play pickup sound

rem -- Controlla se 1'Eroe, con la chiave in mano, raggiunge l'area della porta. Se si, imposta
lo stato a Vittoria --
if £ =1 6& x < 20 && y < 28 thene =2 : s =0

return

rem ====== SUBROUTINES AUDIO (impostano timer e registri audio per ogni effetto) ======

play hero step sound

s = 3 : AUDVO = 8 : AUDCO = 12 : AUDFO = 25 : return
play enemy step sound

t =3 : AUDVl1 = 6 : AUDCl = 14 : AUDFl = 28 : return
play hit sound

t = 10 : AUDV1 = 12 : AUDCl = 2 : AUDFl = 30 : return
play pickup sound

s = 15 : AUDVO = 15 : AUDCO = 12 : AUDFO = 10 : return
play win sound

s = 20 : AUDVO = 15 : AUDCO = 12 : AUDFO = 5 : AUDVLI = 0 : return
play lose sound

s = 20 : AUDVO = 15 : AUDCO = 2 : AUDFO = 25 : AUDV1 = 0 : return

rem ====== SUBROUTINES GRAFICHE (contengono i dati binari per ogni frame di animazione) ======

player0_static ; Frame per 1'Eroe quando e fermo.
player0:
$0010100
$0010100
%$0010100
$1001001
$0111110
$0001000
$0011100
$0011100

end
return

player0 framel ; Primo frame dell'animazione di corsa dell'Eroe.
player0:
%$0010100
%$0010100
%$0010100
%$1001000
$0111111
$0001001
%$0011100
%$0011100

Pagina 55 di 236

end
return

player0 frame2 ; Secondo frame dell'animazione di corsa dell'Eroe.
playerO:
%0010000
%0010000
$0010100
%$1001001
%0111110
%0001000
$0011100
%0011100

end
return

playerl framel ; Primo frame dell'animazione del Guardiano.
playerl:
$0010100
$0010100
%$1010101
%$1011101
$0111110
$0001000
$0111110
%0011100

end
return

playerl frame2 ; Secondo frame dell'animazione del Guardiano.
playerl:
$1000001
$0100010
%0010100
%0011100
%0111110
$1001001
%$1011101
%0111110

end
return

Premi F5. Il tuo gioco é ora completo e vivo! L’eroe e il guardiano si muovono, i suoni danno
vita all’azione e c’¢ un obiettivo chiaro.

P La misteriosa ball

Oltre ai due player, 1’ Atari 2600 puo gestire altri tre oggetti grafici semplici:
missile0, missilel e, appunto, ball. La ball & un semplice rettangolo il cui colore &
legato a quello del Playfield (COLUPF). Possiamo controllarne la posizione (ballx,
_ bally) e le dimensioni. E perfetta per rappresentare oggetti come proiettili, chiavi o

tesori. Ne parleremo in dettaglio nel Capitolo 9. Per ora, ci basta sapere che € il
nostro tesoro da raccogliere.

Il Labirinto delle Variabili a-z

Hai notato quanto puo essere difficile tenere traccia di cosa fa ogni variabile?
Benvenuto in una delle sfide centrali della programmazione “vecchia scuola”! Con
poca memoria a disposizione, i programmatori dovevano essere estremamente
metodici. Senza una “mappa” come quella che abbiamo scritto all’inizio, un
programma puo diventare rapidamente un groviglio indecifrabile. Questo problema
della leggibilita e cosi sentito che Batari Basic offre una soluzione potente: il
comando dim. Con dim, possiamo dare alle nostre variabili dei nomi significativi

Pagina 56 di 236

(es. dim hero_x = a). Da quel momento in poi, nel codice potremo usare hero_x al
posto di a (ma sono la stessa variabile!) rendendolo piu facile da leggere. Abbiamo
scelto di non usare dim in questo primo progetto per farti “toccare con mano” le
sfide originali, ma d’ora in poi lo useremo!

La Necessita di una ROM da 4K

Se avessimo usato all’inizio del programma set romsize 2k avremmo incontrato un
errore spaventoso nella finestra di OUTPUT, simile a questo:

-89 bytes of ROM space left ...
error: Origin Reverse-indexed.
ERROR: 2600

basic compilation failed.

Questo errore indica il superamento del limite di memoria della cartuccia. Cosa
significa questo errore? All’inizio dei nostri programmi abbiamo sempre scritto set
romsize 2k. Questa direttiva dice al compilatore: “Prepara una cartuccia virtuale da 2
kilobyte (2048 byte)”. Il nostri programmi finora non sforavano i 2K. Ma “Fuga dal
Castello Digitale”, con le sue animazioni multiple, le subroutine per la logica e gli
effetti sonori, ¢ diventato piu grande. L’errore -89 (meno 89) bytes of ROM space
left ¢ il modo del compilatore di dirti: “Ho finito lo spazio! Il tuo programma e 89
byte piu grande di una cartuccia da 2K”. L’errore successivo (Origin Reverse-
indexed) € una conseguenza tecnica di questo sforamento.

La Soluzione: Una Cartuccia piu Grande! Proprio come nel mondo reale, se un
gioco era troppo complesso per una cartuccia da 2K, gli sviluppatori ne usavano una
piu capiente. La dimensione successiva pit comune era quella da 4 kilobyte (4096
byte). Per risolvere il nostro problema, basta comunicare al compilatore che
vogliamo usare una cartuccia pit grande con set romsize 4k. Ora premi F5. Il gioco
compilera senza errori e ti verra indicato quanti byte di preziosa memoria ROM ti
rimangono ancora (1951 bytes)!

2600 Basic compilation complete. 1951 bytes of ROM space left

Gestire le dimensioni della ROM ¢ una parte fondamentale del lavoro di un
programmatore dell'Atari 2600. In questo manuale non andremo oltre i 4K, ma
potrai trovare informazioni interessanti su ROM piu grandi e altro nel capitolo 13.
Un altro errore “strano” : Branch out of range

Man mano che i tuoi giochi diventano pit complessi, con molte subroutine e una
logica articolata, potresti incontrare un errore di compilazione apparentemente
strano, simile a questo: “Error: Branch out of range .

Questo errore non significa che il tuo codice sia sbagliato, ma che stai chiedendo al
programma di fare un "salto" (goto o gosub) troppo lungo.

La soluzione é inserire set smartbranching on immediatamente dopo set romsize:
set smartbranching on

A questo punto ci pensera batari basic a permettere ai tuoi goto e gosub di “saltare
lontano”.

Pagina 57 di 236

Pagina 58 di 236

Parte 2: Tecniche Avanzate e Segreti dell'Hardware

Atari 2500 Prototype, Us, 1975

Gt of Ropales £ Milner (X725, &5/

Prototipo della console Atari 2600 esposto al Computer History Museum. Foto: Pargon, CC BY 2.0

Pagina 59 di 236

Pagina 60 di 236

Capitolo 8 — Alias, palla e missili

In questo capitolo, impareremo a scrivere codice piu pulito e a sfruttare altri oggetti grafici che
1’ Atari 2600 ci mette a disposizione. Passeremo da semplici avventurieri a veri ingegneri del
codice.

8.1 - Organizzare il Codice: Gli Alias con dim

Nel capitolo precedente, hai sperimentato in prima persona la difficolta di tenere traccia di cosa
fa ogni variabile da a a z. Un piccolo errore di distrazione, e un gioco puo smettere di funzionare
in modi misteriosi. Per risolvere questo problema e rendere il nostro codice infinitamente piu
leggibile, Batari Basic ci offre un comando fondamentale: dim.

dim (che sta per dimension) ci permette di creare un alias, ovvero un soprannome, per una delle
variabili a singola lettera.

La sintassi e: dim nome_significativo = lettera
rem Esempio di utilizzo di 'dim'
dim hero x a

dim hero y = b
dim has key = c

rem Inizializzazione
hero x = 80
hero y = 50
has _key = 0

main

if joyOleft then hero x = hero x - 1
Come funziona? Dopo aver dichiarato dim hero_x = a, ogni volta che userai hero_x nel tuo
codice, il compilatore lo sostituira automaticamente con a. Per te, il codice diventa leggibile
come un libro; per la console, non cambia assolutamente nulla in termini di performance.

Il comando dim é incredibilmente potente, ma nasconde una trappola molto
insidiosa. Quando scegli un nome per la tua variabile (un alias), devi assolutamente
evitare di usare esattamente o di iniziare il nome della tua variabile con:

- parole Chiave di Batari Basic: rem, if, then, goto, end, ecc.
- nomi di Registri Hardware: COLUBK, playerOx, REFP0, NUSIZ0, AUDVO, ecc.

- variabili Speciali: score, pfscorecolor, missileOheight, ecc.

Se nel codice useremo un alias sconosciuto o non corretto (ad esempio: hero_xx),
verra segnalato con un errore del tipo:

primo_gioco.bas.asm (1818): error: Unknown Mnemonic 'sta hero_xx ‘.

Attenzione! Queste regole si applicano anche alle label. Mai usare un nome per la
label uguale ad una parola chiave del linguaggio o che iniza con essa!

Da questo punto in avanti, useremo sempre dim per le nostre variabili. E una delle
pratiche piu importanti per scrivere codice pulito e facile da modificare in futuro.
Diremo addio al “labirinto delle variabili a-z” e daremo ai nostri dati dei nomi che
abbiano un senso. Scegli sempre nomi unici e descrittivi per le tue variabili,
preferibilmente usando il minuscolo e il trattino basso “_” per separare le parole.

Pagina 61 di 236

8.2 — Oggetti Grafici Semplici: Palla e Missili

Finora abbiamo lavorato principalmente con gli sprite (player0, playerl) e lo sfondo (playfield).
Ma I’ Atari 2600 ha altri tre assi nella manica: la Palla (ball) e i due Missili (missile0, missilel).
Sono oggetti grafici semplici, ma incredibilmente versatili, usati in innumerevoli classici da
Pong a Combat.

Non puoi definirne la forma con dati binari come fai per gli sprite, ma puoi controllarne
posizione, dimensione e colore.

Colore Condiviso: Questi oggetti, per come ¢ stato progettato 1’hardware dell’ Atari 2600,
“prendono in prestito” il colore da altri elementi:

e La ball ha sempre lo stesso colore del Playfield (COLUPF).

e missile0 ha sempre lo stesso colore di player0 (COLUPO).

e missilel ha sempre lo stesso colore di playerl (COLUP1).
Controllo Dimensioni: La loro altezza e larghezza sono controllate da registri speciali.
Altezza: ballheight, missileOheight, missilelheight (valori da 1 a 8 pixel).

Larghezza: Controllata da bit specifici nei registri CTRLPF (per la ball) e NUSIZO/NUSIZ1 (per
i missili). Le larghezze possibili sono 1, 2, 4 o 8 pixel.

Screenshot di Combat: i missili (al centro dello schermo) hanno lo stesso colore dei player

8.3 — La Palla Rimbalzante
Mettiamo subito in pratica queste conoscenze. Creeremo un programma che fa rimbalzare una
palla all’interno dello schermo. Questo ¢ il cuore di giochi come Pong o Breakout. VVogliamo:
e Creare una palla visibile e di dimensioni adeguate (4x4 pixel).
e Darle una velocita iniziale.

e Invertire la sua velocita quando tocca i bordi dello schermo.

Pagina 62 di 236

rem La Palla Rimbalzante
set romsize 2k

a
b

dim ball x
dim ball y
dim vel x = ¢
dim vel y = d

rem --- Inizializzazione ---
ball x 80 ; Posizione iniziale
ball y 50

vel x =1 ; Velocita iniziale
vel v =1

main_loop
rem --- Aggiorna Posizione ---

ball x = ball x + vel x

ball y = ball y + vel y

rem --- Logica di Rimbalzo sui Bordi ---

if ball x < 10 || ball x > 150 then vel x = 0 - vel x ; inverte velocita x
if ball y < 10 || ball y > 85 then vel y = 0 - vel y ; inverte velocita y
rem --- Disegno ---

ballx = ball x ; Assegna la posizione X calcolata al registro hardware
bally = ball y ; Assegna la posizione Y calcolata al registro hardware
ballheight = 4 ; Altezza di 4 pixel

CTRLPF = 32 ; Larghezza di 4 pixel (vedi Appendice B)

COLUBK = $08 ; Sfondo grigio

COLUPF = $1E ; Il colore della palla sara giallo

drawscreen

goto main loop

Premi F5. Vedrai una palla quadrata verde rimbalzare all’infinito sullo schermo. Hai appena
creato il tuo primo motore fisico! Per una guida completa su tutti i valori possibili per i registri
CTRLPF e NUSIZX, consulta I’ Appendice B.

8.4 — La Magia dei Missili Orizzontali

Finora abbiamo pensato ai missili come proiettili verticali. Ma come si creano oggetti orizzontali
come la spada di un cavaliere in Adventure o i laser in Berzerk? La risposta é un altro geniale
trucco del TIA.

Per creare un missile orizzontale, devi:

- Impostare la sua altezza (missileOheight) a un valore molto piccolo (di solito 0). Questo
lo trasforma in una linea sottile.

- Usare il registro NUSIZO0 per dargli una larghezza (fino a 8 pixel).

La Genialita Nata dalla Necessita

Affermare che il Television Interface Adapter (TIA) ¢ “geniale” non ¢
un’esagerazione, ma il riconoscimento di una delle piu incredibili opere di
ingegneria minimalista nella storia dei videogiochi. Per capire 1’ Atari 2600,
dobbiamo tornare al 1977. L’obiettivo non era creare la console piu potente
possibile, ma quella pit economica possibile. Ogni componente, ogni transistor,
ogni singolo centesimo risparmiato sul costo di produzione era fondamentale per
rendere la console accessibile alle famiglie. Questa filosofia di design, guidata dal
leggendario ingegnere Jay Miner, porto alla creazione di un hardware estremamente
limitato, ma incredibilmente flessibile.

Pagina 63 di 236

Nata per Pong, Preparata per I’Impossibile

Inizialmente, I’hardware dell’ Atari 2600 fu concepito per giochi molto semplici,
come Pong o Combat. Il TIA era stato progettato per muovere pochi oggetti (due
“racchette”, due “proiettili”’, una “palla”) su uno sfondo quasi inesistente. Non
esisteva un “framebuffer”, ovvero una memoria video dove disegnare un’immagine
completa. Tutto doveva essere generato in tempo reale, riga per riga, in sincrono con
il pennello elettronico del televisore (“Racing the Beam”). Sembrava una condanna
a giochi eternamente semplici. E invece, accadde 1’incredibile. I programmatori,
inizialmente gli stessi ingegneri di Atari e poi quelli delle prime software house
come Activision, iniziarono a “interrogare” I’hardware. Scoprirono che, cambiando i
registri del TIA nel mezzo del disegno di un singolo frame, potevano convincere il
TIA a fare cose per cui non era mai stato progettato. Volevano piu di due oggetti per
riga? Cambiavano la posizione orizzontale di uno sprite “al volo” dopo che era gia
stato disegnato, per farlo riapparire in un altro punto della stessa riga, creando
I’illusione di piu oggetti (una tecnica usata per gli alieni di Space Invaders).
Volevano sfondi complessi e colorati? Cambiavano i registri del colore del playfield
a ogni nuova scanline per creare cieli sfumati, orizzonti e terreni. Volevano oggetti
complessi e non solo proiettili verticali? Hanno trasformato un missile in una sottile
linea orizzontale e gli hanno dato una larghezza variabile, creando spade, laser e
barriere. La “magia” dell’ Atari 2600 non risiede tanto nella potenza del suo
hardware, quanto nella sua vulnerabilita al controllo del software. Il TIA non era un
processore grafico rigido; era un set di strumenti grezzi che un programmatore abile
poteva “suonare” come uno strumento musicale, inventando nuove melodie
(tecniche) ad ogni frame. Ogni gioco innovativo, da Pitfall! a River Raid, era una
testimonianza non di cid che I’hardware poteva fare, ma di cio che I’ingegno di un
programmatore poteva costringerlo a fare. E questa la vera eredita dell’ Atari 2600:
la dimostrazione che i limiti, quando affrontati con creativita, non sono muri, ma
trampolini di lancio per I’inventival

8.5 - La Spada dell’Eroe

Mettiamo in pratica la creazione di un oggetto orizzontale. In questo esempio, il nostro eroe (un
semplice quadrato) potra brandire una “spada” premendo il pulsante di fuoco. Questo codice
infatti crea una “spada” orizzontale di 8 pixel che appare quando si preme il pulsante di fuoco.

rem La Spada dell'Eroe

set romsize 2k

dim hero_x
dim hero_y

rem --- Inizializzazione ---

hero x =

hero y =
player0:
%$11100111
$01100110
$01100110
$00111100
$11111111
%00011000
%00011000

end

main_loop

80
50

rem --- Logica di Movimento ---

Pagina 64 di 236

if joyOleft then hero x = hero x - 1
if joyOright then hero x = hero x + 1
if joyOup then hero y = hero y -1

if joyOdown then hero y = hero y + 1

rem --- Logica della Spada ---

; se glocatore preme fuoco:

; Allinea la spada verticalmente al centro dell'eroe
; Posiziona la spada a destra dell'eroe

; Altezza minima, la trasforma in una linea

; Larghezza di 8 pixel (M=3, P=0 - vedi Appendice B)

if joyOfire then missileOy = hero y - 5: missileOx = hero x + 8 : missileOheight = 0 : NUSIZO =

$30

; se giocatore non preme fuoco:
; Nascondi la spada fuori dallo schermo

if !joyOfire then missileOy = 200

rem --- Disegno ---

player0Ox
playerOy

COLUPO
COLUBK

S1E ;
$04

drawscreen

goto main_ loop

hero_x
hero_y

Colore dell'eroe e della spada (giallo)
; Sfondo grigio

Premi F5. Muovi il tuo quadrato sullo schermo. Ora, tenendo premuta la barra spaziatrice, vedrai
apparire una linea gialla orizzontale accanto a esso. Hai creato la tua prima spada!

Combinando missileXheight e NUSIZx, puoi creare proiettili e oggetti di forme diverse,
superando di gran lunga I’idea di un semplice “missile”. Hai appena sbloccato un altro potente
strumento del tuo arsenale di ingegnere Atari.

[Hai appena imparato a controllare la posizione di player0, missile0 e ball. Potresti

pensare che per allinearli perfettamente basti assegnare loro le stesse coordinate. Ad
esempio:

playerOx = 50 : playerQy = 50
missileOx = 50 : missileOy = 50
ballx = 50 : bally = 50

Se provi questo codice, noterai qualcosa di molto strano: orizzontalmente (x) gli
oggetti saranno allineati, ma verticalmente (y) appariranno tutti a diverse altezze!
Benvenuto in una delle peculiarita piu complesse dell’ Atari 2600!

L’Asse X (Orizzontale): Semplice e Prevedibile

Fortunatamente, sull’asse X non ci sono sorprese. La coordinata x si riferisce
sempre al pixel piu a sinistra di ogni oggetto. Impostare lo stesso valore di x per
player0, missileO e ball li allineera perfettamente sul loro bordo sinistro.

L’Asse Y (Verticale): Il Dominio del Kernel

Qui le cose si complicano. Il problema ¢ che I’origine verticale (il “punto zero”) non
e la stessa per ogni tipo di oggetto. Questa differenza non ¢ causata dall’hardware
(il TIA), ma dal kernel di Batari Basic. Per ottimizzare il disegno dello schermo, il
kernel introduce dei piccoli slittamenti (offset) verticali diversi per ogni classe di
oggetto.

Pagina 65 di 236

Non esiste una formula magica unica (y_missile =y _player + N) che funzioni in
ogni situazione per allineare gli oggetti. L’offset esatto puo variare leggermente a
seconda delle opzioni del kernel che usi, dell’altezza dello sprite e di altri fattori di
ottimizzazione. L’unico modo affidabile per allineare perfettamente gli oggetti
sull’asse Y ¢ sperimentare e trovare 1’offset giusto per il tuo gioco. Inizia con lo
stesso valore di y e poi aggiusta finché il risultato non ti soddisfa (ovvero gli oggetti
appaiono dove desideri).

Cos’¢ il Kernel di Batari Basic?

Batari Basic € un “traduttore” (compilatore) che trasforma il nostro codice in
linguaggio macchina per I’ Atari 2600, il vero linguaggio che la CPU 6507 ¢ in grado
di eseguire. Ma non é tutto. Quando compili il tuo gioco, Batari Basic fa qualcosa di
molto intelligente: inietta nel tuo file di gioco una porzione di codice pre-scritto,
estremamente ottimizzato, chiamato Kernel. Pensa al Kernel come al motore grafico
e sonoro del tuo gioco. E una complessa routine che si occupa dei compiti pili
difficili e ripetitivi. Il suo lavoro principale & uno dei piu ardui della
programmazione Atari: disegnare lo schermo (drawscreen).

Cosa Fa Esattamente il Kernel Standard?

Quando nel nostro main_loop chiamiamo drawscreen, in realta stiamo dicendo al
Kernel: “Prendi il comando!”. A quel punto, il Kernel si assume la responsabilita di:

1. Sincronizzarsi con il Televisore: Gestisce il “Racing the Beam”, assicurandosi che
ogni riga venga disegnata al momento giusto.

2. Disegnare tutti gli Oggetti: Legge le posizioni e i dati grafici di player0, playerl,
missile0, missilel, ball e playfield e li disegna sullo schermo, riga per riga.

3. Creare le Basi per il Suono e I’Input: Si assicura che il TIA e il RIOT siano pronti
a ricevere i nostri comandi.

In pratica, il Kernel & il nostro assistente instancabile che si occupa di tutta la “bassa
manovalanza” hardware, permettendoci di concentrarci sulla logica del gioco
usando comandi semplici. Senza il Kernel, dovremmo gestire manualmente ogni
singola scanline del televisore, un compito incredibilmente complesso.

Questo incredibile aiuto, pero, ha un costo: lo spazio. Il codice del Kernel Standard
occupa una porzione significativa della nostra preziosa memoria ROM.

Esistono anche altri Kernel specializzati (come il DPC+ o i Multisprite Kernel),
ognuno con i propri compromessi tra funzionalita e spazio occupato. Per questo
manuale, ci concentreremo sul Kernel Standard, il perfetto punto di partenza per
ogni esploratore dell’ Atari 2600.

Mai dimenticarsi dei Registri Volatili!

Per come funziona il kernel, alcuni registri sono volatili ovvero devi ricordarti di

reimpostarli ad ogni frame nel main loop perche la drawscreen li azzerera. Ecco
la lista dei registri grafici volatili pit comuni che devono essere sempre reimpostati
all’interno del main loop, prima di ogni drawscreen:

REFPO, REFP1 (Riflessione degli Sprite): Specchiano orizzontalmente player0 e
playerl.

Pagina 66 di 236

NUSIZ0, NUSIZ1 (Dimensione e Copie degli Sprite/Missili): Controllano la
larghezza dei missili e il numero di copie o la larghezza (doppia, quadrupla) dei
player.

COLUPQ, COLUP1, COLUPF (Colori dei Player, Missili, Palla e Playfield):
Definiscono il colore degli oggetti mobili e dello sfondo.

PFO, PF1, PF2 (Dati del Playfield - per colonne fisse): Usati per disegnare colonne
verticali fisse (utili per mascherare artefatti o creare barre laterali).

Troverai molte altre informazioni sui registri nell’appendice B!

8.6 — Progetto Guidato: Tiro al Bersaglio

E il momento di mettere insieme tutto quello che abbiamo imparato in questo capitolo per creare
un nuovo mini-gioco completo.

Il giocatore (player0) si muove solo orizzontalmente in basso. Premendo fuoco, spara un
proiettile (missile0) verso 1’alto. Un bersaglio (ball) cade dall’alto in posizioni casuali. Se il
proiettile colpisce il bersaglio, il punteggio aumenta. Se il bersaglio raggiunge il fondo, il gioco
finisce.

La Variabile score

Batari Basic ci offre una variabile speciale chiamata score. E un contatore a 6 cifre
visualizzato permanentemente in fondo allo schermo. A differenza delle normali
variabili (0-255), puo gestire numeri fino a 999.999. Per aggiungere punti si usa
I’aritmetica standard, come score = score + 1. Approfondiremo il suo
funzionamento e le opzioni di personalizzazione nel Capitolo 15.

La Casualita con rand

Il comando rand genera un numero casuale da 0 a 255. E lo strumento perfetto per
aggiungere imprevedibilita ai nostri giochi, come far apparire i nemici in posizioni
diverse. Per ottenere una vera casualita tra una partita e 1’altra, ¢ necessario pero
inizializzare il generatore di numeri casuali, una tecnica che esploreremo

nell’ Appendice C.

Ecco il codice completo per il nostro tiro al bersaglio.

rem
set

rem
dim
dim
dim
dim
dim
dim

rem

Progetto: Tiro al Bersaglio
romsize 2k

--— Alias delle Variabili ---
player x = a

missile y = b

target x = ¢
target y = d
game over = e
timer caduta = f

—--- Inizializzazione del Gioco ---

gosub reset game

main_loop

rem

se 11 gioco non é finito, continua con la logica di gioco

if game over = 0 then goto main loop2

rem

Se il gioco e finito, attendi 1l'input per riavviare

if joyOfire then gosub reset game
goto draw frame ; Salta la logica di gioco

Pagina 67 di 236

main loop2
rem --- Logica di Gioco ---

rem 1. Movimento del Giocatore
if joyOleft && player x > 10 then player x = player x - 1
if joyOright && player x < 150 then player x = player x + 1

rem 2. Logica dello Sparo
rem Se il pulsante & premuto E non c'e gia un missile attivo (missile y > 0)
if joyOfire && missile y = 0 then missile y = 85 : missileOx = player x + 4

; Posizione di partenza del missile

; Allinea 1l missile al centro del giocatore

rem 3. Movimento del Missile

if missile y > O then missile y = missile y - 3 : if missile y < 10 then missile y = 0
; Muovi 11 missile verso l'alto
; Se raggiunge la cima, disattivalo

rem 4. Movimento del Bersaglio

timer caduta = timer caduta + 1 ; ogni frame incrementa il timer di caduta

if timer caduta = 3 then timer caduta = 0 : target y = target y + 1
; Fai cadere il bersaglio solo quando timer caduta €& uguale a 3
; questo rallenta la caduta

if target y > 90 then game over = 1 ; Se il bersaglio tocca il fondo il gioco finisce.

rem 5. Controllo Collisioni
rem La funzione collision() controlla se missile0O e ball si toccano
if collision(missile0, ball) then score = score + 1 : gosub reset target : missile y = 0

; Aumenta 1l punteggio
; Fai riapparire il bersaglio in un nuovo punto
; Disattiva il missile per poter sparare di nuovo
draw_frame
rem --- Sezione di Disegno ---

rem Disegna il giocatore
playerOx = player x
playerOy = 88

player0O: ; Una semplice forma a "torretta"
$11111111
$01111110
%$00111100
end

rem Posiziona il missile (se attivo) oppure nascondilo
if missile y > 0 then missileOy = missile y

if missile y = 0 then missileOy = 200

missileOheight = 8 ; Un missile alto e sottile

rem Disegna il bersaglio (la ball)

ballx = target x

bally = target y

ballheight = 4

CTRLPF = 32 ; Rende la palla larga 4 pixel, per farla quadrata

rem Imposta i1 colori

if game_over = 1 then COLUBK = $44 ; Sfondo rosso in game over

if game over = 0 then COLUBK = $08 ; Sfondo grigio durante il gioco

COLUPO = $9E ; azzurro per giocatore e missile

COLUPF = $1E ; Giallo per il bersaglio (la ball condivide il colore del playfield)
scorecolor = $1E ; Colore giallo per il testo dello score

drawscreen
goto main loop

reset game

Pagina 68 di 236

rem Questa subroutine inizializza o ripristina lo stato del gioco
player x = 80

missile y 0

game over 0

score = 0

gosub reset target

return

reset target
rem Riposiziona il bersaglio in un nuovo punto casuale in alto
target x = rand/2 + 20 ; Usa rand per la posizione X, con un offset
target y =1
timer caduta = 0
return

Analizziamo per bene il codice.

» set romsize 2k: Come sempre, diciamo al compilatore di preparare una cartuccia da 2
kilobyte.

« dim ...: Usiamo dim per dare nomi significativi alle nostre variabili. Questo rende il
codice molto piu facile da leggere. player_x controllera la posizione orizzontale del
giocatore, missile_y quella del proiettile, e cosi via. game_over sara il nostro flag di stato
principale, e timer_caduta ci servira per rallentare il bersaglio.

» gosub reset_game: All’avvio del programma, chiamiamo subito la subroutine
reset_game. Questa routine, che vedremo piu avanti, si occupa di impostare tutti i valori
iniziali (posizione del giocatore, punteggio a zero, ecc.), preparando il campo di gioco per
la prima partita.

« II'main_loop & molto semplice e funge da “smistatore”. Controlla la variabile game_over.
Se e 0, significa che stiamo giocando, quindi salta (goto) al ciclo di gioco vero e proprio,
etichettato main_loop?2.

Se game_over ¢ 1, significa che la partita ¢ finita. Il programma rimane in attesa. Se il
giocatore preme il pulsante di fuoco (joyOfire), chiama di nuovo reset_game per riavviare
la partita. In questo stato, salta direttamente alla sezione di disegno (goto draw_frame)
per mantenere lo schermo attivo ma “congelare” il gioco.

« Movimento del Giocatore: Il codice legge il joystick. Se viene premuto sinistra o destra,
e il giocatore non ha raggiunto i bordi dello schermo (delimitati da 10 e 150), la sua
posizione player_x viene aggiornata.

* Logica dello Sparo: Questa & una riga molto densa. Controlla due condizioni
contemporaneamente (&&):

- 1l giocatore sta premendo il pulsante di fuoco (joyOfire)?

- Non c’¢ gia un missile attivo sullo schermo (missile_y = 0)? Se entrambe le
condizioni sono vere, “attiva” un nuovo missile impostando missile_y a 85 (la sua
posizione di partenza verticale) e allinea la sua posizione orizzontale (missileOx)
al centro del giocatore. Il fatto di controllare missile_y = 0 ci impedisce di sparare
raffiche infinite di missili.

« Movimento del Missile: Se un missile ¢ attivo (missile_y > 0), la sua posizione verticale
viene decrementata di 3 ad ogni frame, facendolo muovere verso 1’alto. Se il missile
raggiunge la cima dello schermo (missile_y < 10), la sua variabile missile_y viene
resettata a 0, “disattivandolo” ¢ permettendo al giocatore di sparare di nuovo.

« Movimento del Bersaglio: Qui usiamo un timer per rallentare la caduta. timer_caduta
viene incrementato a ogni frame. Solo quando raggiunge il valore 3, il bersaglio scende di
un pixel (target_y = target_y + 1) e il timer viene azzerato. In pratica, il bersaglio si

Pagina 69 di 236

muove solo un frame ogni tre, apparendo piu lento. Se il bersaglio raggiunge il fondo
(target_y > 90), la variabile game_over viene impostata a 1, terminando la partita.

Controllo Collisioni: La funzione collision() controlla se il missile0 e la ball (il nostro
bersaglio) si stanno toccando. Se si, esegue tre azioni in sequenza:

1. score =score + 1 : Aumenta il punteggio.

2. gosub reset_target: Chiama la subroutine che riposiziona il bersaglio in un nuovo
punto casuale.

3. missile_y = 0: Disattiva il missile, permettendo al giocatore di sparare di nuovo.

« 1l codice posiziona ogni oggetto (playerOx, missileQy, ballx, ecc.) usando i valori delle
variabili calcolate nella sezione logica.

« Imposta i colori in base allo stato del gioco: lo sfondo COLUBK diventa rosso quando
game_over é 1.

« Infine, drawscreen disegna tutto e goto main_loop fa ripartire il ciclo.

* reset_game: Questa routine viene chiamata all’inizio e al riavvio. Imposta tutte le
variabili ai loro valori di partenza (punteggio a zero, giocatore al centro, ecc.) e poi
chiama reset_target per posizionare il primo bersaglio.

« reset_target: Questa ¢ la routine che rende il gioco imprevedibile. Usa il comando rand
per generare un numero casuale, che viene usato per calcolare una nuova posizione
target x per il bersaglio. Reimposta anche la posizione target_y in cima allo schermo e
azzera il timer di caduta.

8.7 — Usare i bit-flag

Finora, per memorizzare uno stato semplice come “il giocatore ha la chiave?” abbiamo usato
un’intera variabile (un byte completo, che puo contenere 256 valori diversi, da 0 a 255) per
rispondere a una domanda che ha solo due risposte: si 0 no. E come usare un intero foglio di
carta per scrivere una singola spunta. Nella programmazione Atari, dove ogni byte e un tesoro,
questo € un lusso che non sempre possiamo permetterci.

Esiste una tecnica da programmatori esperti per ottimizzare la memoria: i bit-flag.

Una singola variabile (un byte) é composta da 8 bit. Ogni bit pud essere visto come un piccolo
interruttore indipendente, che puo essere “acceso” (valore 1) o “spento” (valore 0). Invece di
usare una variabile per un solo stato, possiamo usarne una per memorizzarne fino a 8!

9 11 889 1T 1

N\ s V7 N N A 2% v’}
)| J })|

\3/ \ ’\1/
g 8 8

)] {
J YA

g 8 8

@

Byte

\

Nell’immagine sopra, vediamo il byte composto dai suoi 8 bit. Il bit “0” ¢ quello piu a destra e
nell’esempio ¢ accesso e quindi ¢ 1. Il bit “6” ¢ il penultimo a sinistra ed ¢ spento, cio¢ 0.

In Batari Basic per leggere o scrivere un singolo bit di una variabile, si usa questa sintassi:
variabile{numero_bit}

Pagina 70 di 236

Immaginiamo di voler tenere traccia di piu stati per il nostro eroe: il possesso della spada e il
possesso dello scudo. Senza i bit-flag, avremmo bisogno di due variabili separate (un grande
spreco!):

dim has_sword = a
dim has_shield = b

Con i bit-flag, possiamo usare una sola variabile, che chiameremo hero_flags:
dim hero flags = a

rem Inizializzazione: 1l'eroe non ha nulla
hero flags = 0

main loop
rem ... logica di gioco ...

rem L'eroe ha trovato la spada!
hero flags{0} = 1 ; Accendi il bit 0 per indicare che ha la spada

rem ... logica di gioco ...

rem L'eroe ha trovato lo scudo!
hero flags{l} = 1 ; Accendi il bit 1 per indicare che ha lo scudo

rem ... logica di gioco ...

rem Possiamo attaccare solo se abbiamo la spada
if joyOfire && hero flags{0} then gosub attack routine

In questo esempio, abbiamo usato una singola variabile (a) per gestire due stati completamente
diversi, semplicemente usando separatamente i suoi bit O e 1.

e || Test conif

Quando controlli un bit-flag in una condizione if, ricorda la regola che abbiamo
visto per il joystick: non usare il segno di uguale!

I test if variabile{bit} ¢ gia di per sé una domanda “questo bit ¢ uguale a 1?”.
—— if hero_flags{0} then ... « Corretto! (Significa “SE il bit0¢ 1...”)

if hero_flags{0} = 1 then ... < Errato!

Per controllare se un bit & 0, usa I’operatore di negazione !:

if thero_flags{Q} then ... (Significa “SE il bit 0 NON é 1 (cioé € 0)... ")

Perché un Byte va da 0 a 255?

Hai notato che tutte le variabili (a...z) e i registri del TIA possono contenere solo
numeri da 0 a 255?

La quantita fondamentale di informazione che il tuo Atari 2600 (e qualsiasi
computer) elabora € il Byte. Un byte & un gruppo di 8 Bit.

Cos'e un Bit? Un Bit (Binary Digit) & un singolo interruttore elettronico che puo
essere solo su due stati: Acceso (1) o Spento (0).

Ogni bit all'interno del byte ha un valore fisso, che & una potenza del 2, proprio
come le cifre nelle nostre normali decine e centinaia.

Pagina 71 di 236

Quando un bit e Acceso (1), il suo valore viene contato. Quando é Spento (0), il suo
valore viene ignorato.

1T 01 1 0 0 1T 1

@ SN TR P
(\'{ € 'III/— Y b1 \-[/] 2elevatoalla7 =128

T 6 /5 /a4 f\ 3\ 2 .1 /v
/
\g \'g \'g/ \'5/ \g/ \g \g/ 2 elevato alla 6 =64
2 elevato alla5 =32
2 elevato alla4 = 16
B\/te 2 elevatoalla3=8
2 elevatoalla2=4
128+ 0+ 32+16+ 0+ 0+ 2 + 1 2 elevatoallal=2
2 elevato alla0=1
=179

Quindi, guardando all’esempio qui sopra, se un registro o una variabile ha il valore
179, significa che i suoi bit 7,5,4,1 ¢ 0 sono “accesi”.

Padroneggiare i bit-flag ¢ una delle abilita chiave per “spremere ogni byte” e creare giochi
complessi con risorse minime. Molti dei giochi classici e degli esempi nella libreria finale di
questo manuale ne fanno un uso intensivo.

Pagina 72 di 236

Capitolo 9 — Padroneggiare il Playfield

Finora abbiamo trattato il Playfield come una struttura statica, un bassorilievo digitale definito
una volta per tutte all’inizio del gioco. Ma i mondi piu interessanti sono quelli che cambiano, che
reagiscono alle azioni del giocatore, che si muovono. In questo capitolo, sbloccheremo il vero
potenziale del Playfield.

9.1 - Leggere il Mondo: Il Comando pfread

Come fa il nostro programma a sapere se un punto specifico del Playfield ¢ un “mattone” (X) o
uno spazio vuoto (.)? Possiamo interrogare la memoria della console usando il comando pfread.
pfread(x, y) ¢ una domanda che restituisce “vero” se il blocco del Playfield alla coordinata (x, y)
¢ acceso, ¢ “falso” se ¢ spento. La coordinata X va da 0 a 31 (da sinistra a destra). La coordinata
y vada 0 a 10 (dall’alto in basso).

Questo comando é fondamentale per creare una logica di collisione con i muri veramente solida,
come abbiamo anticipato con la tecnica “Salva e Ripristina”. Invece di far “rimbalzare” il
giocatore, possiamo impedirgli del tutto di entrare in un muro.

P pfread puo essere utilizzato solo all’interno di espressioni if come valore vero o
falso, similmente a collision o joyOfire. Inoltre per le coordinate tra parentesi vanno
utilizzate solo variabili “da sole” oppure numeri interi. La stessa regola si applica a
pfpixel che vedremo tra poco.

Convertire Coordinate Sprite in Coordinate Playfield

Per usare pfread() con il tuo player, devi “tradurre” le coordinate dello sprite in
coordinate del Playfield. La formula base per trovare il blocco (pf_x, pf_y) su cui si
trova I’angolo in alto a sinistra di playerO(o playerl) é:

pf_x = (playerOx - 16) / 4
pf_y = playerQOy /8

Tuttavia &€ come sempre necessario poi lavorare su eventuali offset dipendenti dalle
caratteristiche dello sprite. Padroneggiare questa conversione ¢ il segreto per creare
interazioni precise con lo scenario.

9.2 — Missione: Costruire e Distruggere con pfpixel
Il comando pfread ci permette di leggere, ma pfpixel ci permette di scrivere. Con questo
comando, possiamo accendere (on) o spegnere (off) o invertire (flip) un singolo “mattone” del
Playfield durante il gioco:

pfpixel x y on

pfpixel x y off

pfpixel x y flip
Questo apre le porte a un’infinita di meccaniche di gioco dinamiche: muri che possono essere
distrutti, ponti che possono essere costruiti, porte che si aprono.
Creiamo un gioco in cui il giocatore deve far comparire un ponte (premendo fuoco) per
attraversare un baratro. Ogni volta che si preme fuoco, compare un nuovo “blocco” su cui si puo
procedere.

Pagina 73 di 236

Rem Il Ponte Magico
set romsize 2k

dim player x = a
dim player y = b
dim bricks = ¢
dim floor = d
dim retain = e

rem --- Inizializzazione ---

player x = 20

player y = 64

bricks = 5 ; Il giocatore ha 5 mattoni

playerO:
$0010100
%$0010100
%$0010100
$1001001
$0111110
%$0001000
%$0011100
$0011100
end

playfield:
0,0,0:0.9.0:9:9.0.9.9.9.0,0.:9.0.0.9.9.0,0.0.0.0.0:0.0.0.9.0.0,0.4

main_loop
if joyOleft && player x > 20 then player x = player x - 1

rem determina se il giocatore e sul ponte
t = (player x + 5 - 16) / 4 ; +5 perche il piede destro finisce al pixel 5

if joyOright && player x < 130 && pfread(t,8) then player x = player x + 1

rem Resetta il flag di ritenzione del fire
if !joyOfire then retain = 0

rem Se il giocatore preme fuoco
if joyOfire && bricks > 0 && retain = 0 then goto build bridge
goto continue game

build bridge
t = 17 - bricks

pfpixel t 8 on ; ...costruisce un pezzo di ponte!
bricks = bricks - 1
retain = 1

continue game
playerOx = player x
playerOy = player y

COLUPO $1E ; Colore player0
COLUBK = $04 ; Sfondo grigio
COLUPF = $9E ; Colore playfield

drawscreen
goto main_loop

Pagina 74 di 236

11 Problema del “Fuoco a Ripetizione” e la Tecnica del “Retain”

Se avessimo usato solo if joyOfire && bricks>0 then senza && retain =0
avresti visto comparire tutti e 5 i blocchi del ponte in un istante: la pressione del fire
viene infatti letta a ogni frame, 60 volte al secondo!

Come possiamo dire al programma di “eseguire 1’azione una sola volta, anche se il
pulsante rimane premuto, e attendere che venga rilasciato e premuto di nuovo”? La
soluzione & proprio una tecnica classica chiamata “ritenzione dell’input” (o input
debouncing).

L’idea ¢ semplice: usiamo una variabile retain (un “flag”) per ricordare se 1’azione
legata al pulsante ¢ gia stata eseguita in seguito all’ultima pressione.

Nel main loop, controlliamo se il pulsante di fuoco non & premuto (if /joyOfire ...) e
in tal caso azzeriamo la nostra variabile di ritenzione. Questo “resetta” la possibilita
di eseguire di nuovo 1’azione.

Quando verifichiamo se il giocatore vuole sparare, aggiungiamo una condizione: la
nostra variabile di ritenzione deve essere a zero.

Infine, appena I’azione viene eseguita, impostiamo subito la variabile di ritenzione a
1. Questo “blocca” la possibilita di eseguire di nuovo 1’azione nei frame successivi,
anche se il giocatore continua a tenere premuto il pulsante.

Disegno Veloce: pfhline e pfvline

Disegnare un labirinto complesso con pfpixel sarebbe lento e dispendioso. Per
questo esistono due comandi piu potenti che disegnano intere linee di mattoni in un
colpo solo.

pfhline x y | on ; disegna una linea orizzontale di | blocchi (off = cancella)

Pagina 75 di 236

pfvline X y a on ; disegna una linea verticale di a blocchi (off = cancella)

Sono perfetti per generare labirinti o strutture complesse all'inizio di un livello,
risparmiando preziosa memoria ROM!

9.3 — Mondi in Movimento: Lo Scrolling con pfscroll
E se volessimo che fosse il mondo a muoversi, invece del giocatore? Il comando pfscroll ci
permette di far scorrere 1’intero Playfield in una delle quattro direzioni:

pfscroll up

pfscroll down

pfscroll left

pfscroll right
Questa e la tecnica fondamentale per tutti i giochi a scorrimento, come gli sparatutto verticali o i
giochi di corse automobilistiche. Tuttavia richiede di riscrivere, dopo lo scroll, la zona del
playfield che é rimasta vuota.
Per creare ad esempio I’illusione di una strada che si muove verso il basso, potremmo scrivere
questo codice:

main
. logica di gioco ...

rem Fa scorrere la strada
pfscroll down

drawscreen
goto main

Lo Scrolling ¢ Costoso!

Lo scorrimento orizzontale (pfscroll left/right) ¢ una delle operazioni piu “pesanti”
in Batari Basic e consuma moltissimi cicli CPU. Usalo con cautela e assicurati che
la logica del tuo main loop sia molto snella per evitare lo screen roll (ne parleremo
nel capitolo 13). Lo scorrimento verticale (pfscroll up/down) & molto piu leggero.

9.4 — Movimento su Griglia per Labirinti Giocabili

Abbiamo imparato a disegnare labirinti, ma come ci si muove al loro interno senza “incastrarsi”
nei muri? | giochi classici come Pac-Man risolvono questo problema con una tecnica chiamata
Movimento su Griglia.

L’idea ¢ che il giocatore puo cambiare direzione solo in punti specifici (“incroci”) di una griglia
invisibile. Il programma “ricorda” la direzione desiderata dal giocatore, ma la applica solo
quando raggiunge un incrocio valido, ovvero delle coordinate ritenute valide per cambiare
direzione.

Questo codice permette di cambiare direzione orizzontale solo su certe righe, e verticale solo su
certe colonne.

rem Movimento su Griglia
set romsize 2k

dim allow h a
dim allow v b
dim current dir
dim desired dir

©
d

player0x=77 : playerOy=48 ; posizione iniziale

Pagina 76 di 236

playfield:

Xooooc000000000000000000000 X
AAXXXXXXXXXXX . XXXXXXKXXXXXXX
X60000000000000000000000000 X

player0:
%00111100
$01111110
$11111111
%$11100000
$11111111
$01011110
$00111100
end

main_loop
gosub check grid position
gosub handle grid input
gosub apply grid movement
COLUPO = $1E ; Giallo per il giocatore
COLUPF = $9E ; Azzurro per lo sfondo

drawscreen
goto main loop

check grid position
allow h = 0 : allow v = 0
rem Puoi cambiare direzione orizzontale solo sulle righe 48 o 64
if playerOy = 48 || playerOy = 64 then allow h =1
rem Puoi cambiare direzione verticale solo sulla colonna 77
if playerOx = 77 then allow v = 1
return

handle grid input
if joyOup then desired dir =
if joyOdown then desired dir
if joyOleft then desired dir = 3
if joyOright then desired dir = 4
return

e
N

apply grid movement
rem Se seil su un incrocio orizzontale, puoi cambiare direzione orizzontale
if allow h && desired dir = 3 then current dir = desired dir
if allow h && desired dir = 4 then current dir = desired dir
rem Se sei su un incrocio verticale, puoi cambiare direzione verticale
if allow v && desired dir = 1 then current dir = desired dir
if allow v && desired dir = 2 then current dir = desired dir

rem Muovi sempre nella direzione corrente

if current dir = 1 then playerOy = playerOy -
if current dir = 2 then playerOy = playerOy +
if current dir = 3 then playerOx = playerOx -
if current dir = 4 then player0Ox = playerOx +

e e

rem Limita i movimenti all'interno della griglia
if playerOy < 48 then playerOy = 48

if playerOy > 64 then playerOy 64
<
>

if playerOx 29 then playerOx = 29
if playerOx 125 then player0Ox = 125

return

Pagina 77 di 236

Questa tecnica, combinata con pfpixel e pfread, ti permette di creare labirinti complessi e
perfettamente giocabili, dando al giocatore la sensazione di un movimento fluido e controllato
all’interno di passaggi stretti.

Il Ciclo for...next — Potente ma Pericoloso

Batari Basic offre il classico ciclo for...next per eseguire un blocco di codice un
numero specifico di volte. La sua sintassi e familiare a chiunque abbia mai usato un
linguaggio BASIC.

for variabile = valorel to valore2 step valore3
rem ... blocco di codice da ripetere ...
next
- variabile € una qualsiasi variabile (a...z).
- valorel, valore2, valore3 possono essere numeri o altre variabili.
- step € opzionale; se omesso, il passo é +1. Puoi usare uno step negativo per contare
all'indietro.
rem Conta da 1 a 10
for x = 1 to 10
rem ... fai qualcosa ...

next

rem Conta all'indietro da 50 a 0
for y = 50 to 0 step -1
rem ... fai qualcosa ...

next

Sebbene sembri comodo, l'uso di for...next in Batari Basic € generalmente
sconsigliato per la logica di gioco principale, a causa di due comportamenti molto
particolari e potenzialmente pericolosi.

In Batari Basic, il comando next non si preoccupa di a quale for appartiene.
Quando incontra next, il compilatore semplicemente cerca all'indietro il primo
comando for che trova nel codice e salta li, indipendentemente dal flusso del
programma. Questo puo portare a risultati disastrosi.

Un ciclo for...next monopolizza la CPU finché non & completato. Se inserisci un
for...next lungo nel tuo main_loop, l'intero gioco si "congelera”. Non potrai leggere
I'input, muovere altri oggetti o riprodurre suoni fino alla fine del ciclo.

Usa i cicli for...next con molta cautela, principalmente per compiti di
inizializzazione che avvengono una sola volta (come disegnare un labirinto all'inizio
di un livello). Evitali quasi sempre all'interno del tuo main_loop.

Pagina 78 di 236

Capitolo 10 — Mondi a Schermate Multiple e Kernel Potenziati

Finora le nostre avventure si sono svolte in un’unica stanza. Il nostro eroe € nato, si € mosso € ha
interagito all’interno dei confini di un singolo schermo. Ma le grandi avventure richiedono
grandi mondi da esplorare: castelli con decine di stanze, giungle intricate, labirinti sotterranei.

In questo capitolo, impareremo due dei trucchi piu affascinanti della programmazione Atari:
come creare 1’illusione di un mondo vasto e interconnesso.

10.1 - Creare Mondi a Schermate Multiple

Come abbiamo visto, I’ Atari 2600 fatica persino a disegnare un singolo schermo. Come poteva
allora un gioco come Adventure o Pitfall! avere centinaia di stanze diverse?

La risposta & semplice e geniale: non le mostrava tutte insieme. La console teneva in memoria
solo la stanza in cui si trovava il giocatore. Quando I’eroe usciva da un lato dello schermo, il
programma cancellava tutto, caricava la grafica della stanza successiva e riposizionava I’eroe sul
lato opposto. Per il giocatore, I’effetto era quello di un passaggio fluido da un’area all’altra di un
mondo enorme.

Per tenere traccia di dove si trova il giocatore, usiamo una singola variabile, il nostro “GPS”
interno, che chiameremo room. Ogni valore di room corrispondera a una stanza diversa sulla
nostra mappa immaginaria.

La logica di gioco cambiera radicalmente. Invece di disegnare sempre lo stesso playfield,
useremo una struttura a “centralino” per decidere quale stanza disegnare, basandoci sul valore di
room.

10.2 - Le Due Stanze

Vediamo come funziona la transizione in un piccolo mondo a due stanze. Il nostro obiettivo e
creare un passaggio segreto: quando il giocatore supera un certo limite a destra, il valore di room
cambia e il giocatore viene riposizionato sul lato opposto del nuovo schermo.

rem Le Due Stanze
set romsize 2k

dim player x
dim player y
dim room = c

I
@

room = 1 si parte dalla stanza 1
player x = 50

player0:
%$0010100
%0010100
%0010100
%$1001001
$0111110
%0001000
%0011100
%$0011100
end

main loop
gosub handle movement
gosub handle room transition
gosub draw_current_ room
goto main loop

Pagina 79 di 236

handle movement
if joyOleft then player x = player x - 1
if joyOright then player x = player x + 1

if player x > 136 then player x = 136
if player x < 16 then player x = 16
return

handle room transition
rem Se esci a destra dalla stanza 1, vai alla stanza 2
if room = 1 && player x > 134 then room = 2 : player x = 18

rem Se esci a sinistra dalla stanza 2, torna alla stanza 1
if room = 2 && player x < 18 then room = 1 : player x = 134
return

draw current room
playerOx = player x
playerOy = 64
COLUPO = 508

rem Centralino grafico
if room = 1 then gosub draw rooml
if room = 2 then gosub draw room2

drawscreen
return

draw_rooml
COLUBK = $86 ; Sfondo blu
COLUPF = $1E

playfield:

):0.0.0.0.0.0:0:9:0:0:0:0:0:0:9.9.0.0.0,0.0.0.0.0.9:0:0:0:0:0:0:¢
Xooooo X5 00000000000000000000000 X
Koooooa #000000000000000000000000 X
Koooooa %600000000000000000000 X..X
X5 60000000000000000000000000 X..X
X5 00000000000000000000000 XXXX..X
%6000000000000000000000000000000
%6000000000000000000000000000000

return

draw_room2
COLUBK = $36 ; Sfondo rosso
COLUPF = $1E

playfield:

0:9:9.9:9:9.9.9.9:9.9.9.9.9.9.9.9.9.9,0.9.9.9.9.:9.0.0.9.9.0.0:0.¢
ooooo 20 000000000000000000000600 X
ooooo 20 000000000000000000000600 X
X 2€000000000000000000000000 X
280 000000000000000000000 Xo0o00000 X
280 000000000000000000000 XXXX .X
............................... X
............................... X

return

Premi F5. Ti troverai in una stanza blu con un’apertura a destra. Muoviti verso destra. Non
appena il tuo personaggio uscira dallo schermo, BAM! Ti ritroverai in una nuova stanza rossa,
entrando dal lato sinistro. Hai appena creato un mondo piu grande del singolo schermo!

Pagina 80 di 236

10.3 - | Segreti del Kernel: Grafica Multicolore

Finora, i nostri eroi e i nostri mondi hanno avuto un aspetto un po” monocromatico. playeroO ¢ di
un colore, playerl di un altro, e il playfield di un altro ancora. Ma come facevano giochi come
Pitfall! ad avere un protagonista con la maglietta di un colore e i pantaloni di un altro?

In batari basic la risposta non si trova in un comando, ma in un accordo speciale che possiamo
fare con il “motore” del nostro gioco: il Kernel. Possiamo chiedere al kernel di usare delle
versioni modificate di se stesso, sbloccando nuove capacita grafiche. Ma attenzione, tutto questo
ha un prezzo! Queste “versioni” si attivano con la direttiva set kernel_options.

player0 e playerl possono avere un solo colore, definito da COLUPO, COLUPL. Possiamo pero
chiedere al kernel di usare il tempo che normalmente dedicherebbe al missile0 e missilel per
cambiare il colore di player0 e playerl riga per riga mentre li disegna.

Basta aggiungere:
set kernel_options playercolors playerlcolor

all’inizio del programma. Ora, oltre ai blocchi playerO: playerl:, puoi definire due nuovi blocchi
playerQOcolor: playerlcolor: dove specifichi un colore esadecimale per ogni riga degli sprite. 11
Prezzo da Pagare: Il kernel non ha piu tempo per gestire missile0 e missilel. Perdi
completamente 1’uso di missile0 e missilel!

Il nostro Playfield puo avere un solo colore, definito da COLUPF. Possiamo chiedere al kernel di
cambiare il colore del Playfield per ogni riga orizzontale che disegna. Basta Aggiungere:

set kernel_options pfcolors

e ora puoi definire un blocco pfcolors: dove elenchi una sequenza di colori, uno per ogni riga del
tuo playfield. Questo trucco non ha “prezzi da pagare”.

Ecco un codice di esempio che utilizza player0, playerl e playfield multicolore.

rem Player0O,Playerl,playfield multicolor
set kernel options playercolors playerlcolors pfcolors

set romsize 2k
COLUBK = $00 ; Sfondo nero

player0:
%0010100 ; ultima riga player O
$0010100
$0010100
$1001001
%0111110
$0001000
$0011100

%0011100 ; prima riga player O

Pagina 81 di 236

end

playerl: ; ultima riga playerl
$0010100
$0010100
$0010100
$1001000
$0111111
$0001001
$0011100
$0011100 ; prima riga playerl

end

playerOcolor:

$44 ; colore ultima riga player0
$44

$44

$3E

$3E

$3E

$44

$44 ; colore prima riga player 0

end

playerlcolor:

S1E ; colore ultima riga playerl
S1E

$1E

$60

$60

$60

$1E

$1E ; colore prima riga playerl

end

playfield:

KXXKXXKKXKKXKKX KKK KKK KKXKKXKKXKKX ; riga 0 playfield

200000 280 00000000000000000000000 X
Xooooo Xoocoocoo00000000000000000 X
Xocooo X000000000000000000000 X..X
2600000000000000000000000000 X..X
Xoocooocoooo0000000000000000 XXXX..X
36 6060600000000000900000000000000005

Pagina 82 di 236

KXXKXKKXKKX KKK KKK KKK KKKXKKKKKKKKX ; riga 10 playfield

end

pfcolors:

$08 ; colore riga 0 playfield
S0C ; colore riga 1 playfield
$08 ;

$0A

$0A

socC

$08

$0A

$0A

$0A

$D4 ; colore riga 10 playfield

end

playerOx = 30

playerOy = 64

playerlx = 50

playerly = 64

main loop
COLUPF = $08 ; colore riga 0 playfield
drawscreen

goto main loop

Pagina 83 di 236

Le Opzioni del Kernel

Le kernel_options sono potenti, ma non tutte le combinazioni sono possibili. Il
Kernel Standard supporta solo alcune configurazioni specifiche. Se provi a usare
una combinazione non valida, il compilatore ti dara un errore.

Ecco le combinazioni valide pit comuni per ottenere personaggi e sfondi
multicolore:

set kernel_options playerlcolors

Effetto: Solo playerl € multicolore.

Costo: Perdi completamente 1’uso di missilel.

set kernel_options playercolors playerlcolors

Effetto: Sia playerO che playerl sono multicolore.
Costo: Perdi completamente 1’uso di entrambi i missili, missile0 e missilel.
set kernel_options pfcolors

Effetto: Il playfield & multicolore.

Costo: nullo!

set kernel_options playercolors playerlcolors pfcolors
Effetto: player0, playerl e il playfield sono multicolore.

Costo: Perdi completamente 1’uso di entrambi i missili, missile0 e missilel.

Variare le Altezze delle righe del playfield: pfheights

Di default, ogni riga del Playfield ha la stessa altezza. Ma con l'opzione del kernel
pfheights, possiamo specificare un‘altezza diversa per ogni riga. Questo permette di
creare sfondi con un aspetto molto piu organico e meno "a blocchi".

Come Funziona:
Aggiungi I'opzione all'inizio del programma: set kernel_options pfheights

Definisci un blocco pfheights: dove specifichi l'altezza in pixel di ogni riga, di cui la
prima deve essere per forza di 8 pixel e la somma totale deve essere 88, ad esempio:
pfheights:
8
8
15
1

Pagina 84 di 236

8
end

Questa opzione puo essere usata in combinazione con pfcolors ma in tal caso devi
definire entrambi una volta sola al di fuori del main_loop.

L’Eroe Arcobaleno: Prendi un personaggio che hai disegnato e prova a dargli
colori diversi per la testa, il corpo e le gambe usando playercolors e il blocco
playerOcolor: . Ricorda che non potrai piu usare missile0!

L’Orizzonte Digitale: Prendi uno degli sfondi che hai creato e trasformalo in un
paesaggio con un cielo, un orizzonte e un terreno usando pfcolors. Prova a creare
una gradazione di blu per il cielo per dare un senso di profondita.

Pagina 85 di 236

Capitolo 11 — L’'lllusione della Fluidita: Movimento Sub-Pixel e Fisica

Finora, i nostri personaggi si sono mossi di un pixel intero alla volta, creando un movimento un
po’ “scattoso”. Ma nei migliori classici dell’ Atari 2600 i personaggi sembrano muoversi e
scorrere in modo fluido. Come facevano?

La risposta ¢ una delle “magie” piu importanti del game design: simulavano 1 numeri decimali.
In questo capitolo, impareremo questa tecnica, chiamata aritmetica a virgola fissa, che
trasformera i movimenti dei nostri eroi in animazioni fluide e professionali.

11.1 - Precisione decimale

Immagina di voler muovere un oggetto molto lentamente. La soluzione é separare la posizione
“reale” del personaggio (memorizzata con precisione decimale) dalla sua posizione “visibile”
sullo schermo (che puo essere solo intera). L’aritmetica a virgola fissa (fixed point) ci permette
di fare esattamente questo.

11.2 - L’Aritmetica a Virgola Fissa (8.8) in Batari Basic
Per usare questa tecnica, dobbiamo includere una libreria speciale all’inizio del nostro
programma:

include fixed_point_math.asm

Questo ci permette di definire variabili chiamate 8.8, perché usano due variabili byte (a..z): una
per contenere la parte intera del numero decimale (8 bit) e una per la parte frazionaria (8 bit). Le
dichiariamo con dim usando una sintassi speciale:

dimvl=a.b ;'a' e laparte intera, 'b' la parte frazionaria
Le variabili 8.8 si usano tipicamente per le coordinate degli oggetti. Ad esempio:
dim hero_x_fixed = a.b

In questo esempio: la variabile a conterra il numero di pixel (coordinata x) interi (da 0 a 255); la
variabile b conterra la frazione di pixel (dove b=128 rappresenta 0.5, b=64 rappresenta 0.25, e
cosi via. Ovvero, se b & maggiore di 0, la parte frazionaria del numero é 128 diviso b).

Facciamo degli esempi di assegnazione e somma:

hero x fixed = 60.5 ; in automatico, batari basic assegna a=60 e b=128

hero x fixed = hero x fixed + 0.5 ; hero x fixed diventa 61 (in automatico, batari basic fa il
calcolo e assegna a=61 b=0)

hero x fixed = hero x fixed + 0.25 ; hero x fixed diventa 61.25 (in automatico, batari basic fa
il calcolo e assegna a=61 b=64)

Se ora scriviamo:

x = hero x fixed ; x, essendo una variabile da 0 a 255, “prende” solo la parte intera,ovvero 61

Allo stesso modo:

playerOx = hero x fixed ; playerOx diventa 61 (la parte frazionaria e “invisibile”)

Vediamo ora un esempio completo:

Pagina 86 di 236

dim hero x fixed = a.b
hero x fixed = 80
main loop
if joyOright then hero x fixed = hero x fixed + 0.5
playerOx = hero x fixed ; Assegna SOLO la parte intera a playerOx
drawscreen

goto main loop

Cosa succede frame per frame?
Frame 1: hero_x_fixed parte da 80.0, playerOx é 80.

Frame 2: Supponiamo il giocatore muova il joystick a “destra”. hero_x_fixed diventa 80.5. La
parte intera € ancora 80, quindi playerOx rimane 80. Lo sprite non si & mosso!

Frame 3: Ancora destra. hero_x_fixed diventa 81.0. La parte intera ora e 81, quindi playerOx
diventa 81. Lo sprite si € mosso di un pixel!

Lo sprite si € mosso di un pixel solo dopo due frame. L’effetto visivo € un movimento piu
liscio, alla meta della velocita.

11.3 - Platform Hero - Fisica Realistica con Salto e Gravita

Il movimento sub-pixel non serve solo per lo spostamento orizzontale. E la chiave per creare una
fisica di base realistica, come il salto e la gravita. Un personaggio che salta non si muove a
velocita costante: accelera verso 1’alto, rallenta, si ferma per un istante e poi riaccelera verso il
basso.

In questo esempio, creeremo un motore fisico completo per un personaggio platform,
implementando movimento orizzontale, salto e gravita. Useremo:

» Posizioni a Virgola Fissa (hero_x_fixed, hero_y fixed): Terranno traccia della
posizione “reale” del personaggio.

« Velocita Verticale (y_velocity): Una variabile a virgola fissa che rappresenta la velocita
di salita/discesa.

« Gravita: Un piccolo valore che aggiungeremo a y_velocity ad ogni frame, tirando
costantemente il personaggio verso il basso.

« Salto: Un forte valore negativo che assegneremo a y_velocity quando il giocatore salta,
spingendolo verso 1’alto.

« Controllo a Terra (on_ground): Un flag per capire se permettere al giocatore di saltare
0 no (solo se sta toccando il suolo).

rem Platform Hero - Fisica con Virgola Fissa
set romsize 2k

include fixed point math.asm

dim hero x fixed = a.b ; Posizione X a virgola fissa
dim hero_y fixed = c.d ; Posizione Y a virgola fissa
dim y velocity = e.f ; Velocita Y a virgola fissa

Pagina 87 di 236

dim on ground = g ;1

rem --- Inizializzazione ---

hero_x fixed = 80

hero y fixed = 64

y velocity = 0.0

playerO:
$0010100
$0010100
$0010100
$1001001
$0111110
$0001000
$0011100
$0011100

end

playfield:

D19:0:0:0:9:0:0:0:9.9.9.9.9.9.9.9.9:0:0:0:0:0:0:0:0.0.0.0.9.0.9:¢

Xooooo X5 00000000000000000000000 X
Xooooo X6 00000000000000000000000 X
Xooooo Xooocoo0000000000000000000 X
X6060000000000000000000000000000 X
X600000000000000000000000000000 X
X6 50000000000000000000000000000 X
X6 50000000000000000000000000000 X

end
COLUPO = $1E
COLUBK = $86
COLUPF = $1E

main_ loop
gosub handle input
gosub handle physics

gosub move hero

drawscreen

goto main loop

a terra, 0 = in aria

Pagina 88 di 236

handle input
rem Movimento orizzontale

if joyOleft && hero x fixed > 16 then hero x fixed = hero x fixed - 1

if joyOright && hero x fixed < 134 then hero x fixed = hero x fixed + 1

rem Salto: si pud saltare solo se si & a terra
if joyOfire && on ground then y velocity = -4 ; impulso iniziale verso l'alto
return

handle physics

rem 1. Applica la gravita (tira sempre verso il basso)

y velocity = y velocity + 0.3

rem 2. Applica il movimento verticale (velocita e posizione)

hero y fixed

hero y fixed + y velocity

rem 3. Controlla se il giocatore e atterrato
if hero y fixed < 64 then on ground = 0 ; In aria

if hero y fixed >= 64 then hero y fixed = 64

: y velocity = 0.0 : on ground = 1
sprofondare, ferma la caduta

; Impedisce di

return

move hero
playerOx = hero x fixed ; Assegna SOLO la parte intera alla posizione visibile
playerOy = hero y fixed

return

Come Funziona: Premi F5. Usa il joystick (tasti freccia) per muovere il personaggio a destra e a
sinistra. Premi il pulsante di fuoco (barra spaziatrice): I’eroe eseguira un salto perfetto, con una
curva parabolica realistica, e atterrera dolcemente. Noterai che non potrai saltare di nuovo finché
non avra toccato terra. Hai appena creato un motore fisico da platform.

Pagina 89 di 236

Capitolo 12 - Il Cruscotto del Gioco: Punteggi, Vite e Barre di Stato

Ogni grande avventura ha bisogno di un cruscotto. Come fa un esploratore a sapere quanti tesori
ha raccolto, quante vite gli sono rimaste 0 quanta energia ha il suo scudo? Queste informazioni
vitali vengono mostrate attraverso I’HUD (Heads-Up Display), I’interfaccia grafica che si
sovrappone all’azione.

In questo capitolo, impareremo a costruire il cruscotto del nostro gioco, usando gli strumenti che
Batari Basic ci mette a disposizione: il classico punteggio a sei cifre e le versatili barre di stato.

12.1 - Il Punteggio Tradizionale: Il Comando score

Il modo piti classico per mostrare i punti & usare la variabile speciale score. E una variabile fissa
a 6 cifre, visualizzata permanentemente nella parte inferiore dello schermo. A differenza delle
normali variabili (0-255), score puo gestire numeri da 0 a 999999.

Funziona con uno speciale formato numerico chiamato BCD (Binary-Coded Decimal). Per ora, ti

basta sapere che puoi solo aggiungere o sottrarre solo valori interi usando I’aritmetica standard di
somma e sottrazione (es. score = score + 10).

[Attenzione! score non & una variabile normale e non la puoi utilizzare negli if o per
fare calcoli dentro a espressioni aritmetiche o usarla con altre variabili! Ad esempio:

score = a; NON FUNZIONA!
score = score + b ; NON FUNZIONA!
if score > 100 then gosub vittoria ; NON FUNZIONA!

In sintesi, dovrai usare altre variabili per “tener conto” di eventuali bonus o eventi
nel tuo gioco che vorresti far dipendere dallo score.

Le tecniche per controllare score sono abbastanza complesse e richiedono molti
calcoli e tempo di CPU. Parleremo nell’appendice C di una delle possibili tecniche.

Per far apparire il punteggio, devi fare due cose nel tuo main loop:

1. Impostare un colore: Usa il registro scorecolor. Se non lo imposti, lo score sara nero e
invisibile.
2. Assegnare un valore: Dai un valore iniziale alla variabile score.

rem Attivare lo Score
set romsize 2k

score = 0

main loop
scorecolor = $1E ; Colore giallo per il punteggio

if joyOfire then score = score + 100

drawscreen
goto main loop

Premi F5. Vedrai “000000” in fondo allo schermo. Premi fuoco ¢ lo vedrai aumentare. Hai
appena creato il tuo primo contatore di punti!

Pagina 90 di 236

12.2 - Oltre i Numeri: Le Barre di Stato pfscore

A volte i numeri non bastano. Potresti voler mostrare le vite come icone o I’energia come una
barra che si svuota. Per questo, Batari Basic offre le pfscore bars. Sono due aree grafiche a 8
blocchi, situate a sinistra e a destra dello score, che puoi controllare.

Per attivarle, devi usare il comando const pfscore = 1 all’inizio del programma. Ora hai accesso
a tre nuove variabili:

« pfscorecolor: Imposta il colore di entrambe le barre.
» pfscorel: Controlla la barra di sinistra
« pfscore2: Controlla la barra di destra

Ogni barra e composta da 8 bit. Impostando un bit a 1 accendi il blocco corrispondente. Il modo
pill intuitivo per controllarle e usare i numeri binari (%).

12.3 - Barra della Vita e Contatore Vite

Vediamo come usare le barre di stato in un gioco per creare un HUD completo.
Useremo la barra sinistra (pfscorel) per mostrare fino a 3 vite come puntini.
Useremo la barra destra (pfscore2) come una barra della salute che si svuota.

rem HUD Completo
set romsize 2k

const pfscore = 1 ; attiva barre laterali

dim lives bar = a
dim health bar = b

dim retainleft = c
dim retainright = d

rem --- Inizializzazione ---
lives bar = 3%00010101 ; 3 vite (i bit 0, 2, 4 sono accesi)
health bar = $11111111 ; Salute piena (tutti i bit accesi)

main_ loop
rem --- Logica di Gioco (Simulata) ---
rem Se premi sinistra, perdi salute
if !joyOleft then retainleft = 0
if joyOleft && retainleft = 0 then health bar = health bar / 2 : retainleft =1

rem Se premi destra, perdi una vita
if !joyOright then retainright = 0
if joyOright && retainright = 0 then lives bar = lives bar / 4 : retainright = 1

rem Se premi fire ripristina valori iniziali
if joyOfire then 1lives bar = %00010101 : health bar = %$11111111 : score = score + 1

rem --- Disegno HUD ---
scorecolor = $1E ; colore giallo
pfscorecolor = $86 ; colore blu
pfscorel = lives bar

pfscore2 = health bar

drawscreen
goto main_loop

Premi F5. Ora hai un HUD funzionale! Premi sinistra (joyOleft) per vedere la barra della salute
diminuire e destra (joyOright) per vedere le vite sparire una a una.

Pagina 91 di 236

OO0

La Magia della Divisione Binaria

Ti sei chiesto perché usiamo / 2 e / 4? E un trucco geniale che sfrutta la matematica
binaria.

Barra della Salute (/ 2): Dividere un numero per 2, in binario, e equivalente a
“spostare” tutti i suoi bit di una posizione verso destra (shift a destra). Il bit piu a
destra “cade” e viene perso, e a sinistra entra uno 0. Applicato alla nostra barra
%11111111, questo la svuota gradualmente, un pezzetto alla volta: %01111111,
900111111, e cosi via (attenzione: per pfscore2 il bit piu a destra é quello
visualizzato piu a sinistral).

Barra delle Vite (/ 4): Dividere per 4 equivale a fare uno shift a destra di due
posizioni. Nel nostro schema %00010101, dove le vite sono i bit 0, 2 e 4, questo
“salto” di due posizioni spegne un puntino alla volta in modo netto.

12.4 - Un’Alternativa alle Vite: Il Sistema di Danni

Finora abbiamo parlato di “vite”: perdi una vita, il gioco si resetta. Ma molti giochi, specialmente
quelli di corse o di combattimento, usano un sistema diverso: i punti danno. Invece di avere un
numero discreto di tentativi, il giocatore ha un’unica “barra della vita” (o un contatore invisibile)
che si riempie o0 svuota a ogni colpo. Il gioco termina solo quando i danni raggiungono una
soglia. Questa tecnica crea un feeling di gioco diverso, piu orientato alla sopravvivenza.
Realizzarla & molto semplice. Invece di un contatore di vite che scende, usiamo un contatore di
danni che sale.

dim damage counter = c
max damage = 60

. nel main loop, dopo drawscreen ...
if collision(player(O, enemy) then damage counter = damage counter + 1

rem Controlla se il gioco e finito
if damage counter >= max damage then goto game over

L'Effetto Sfumato (scorefade)

Vuoi dare al tuo punteggio un aspetto piu professionale e tridimensionale, tipico di
molti giochi classici? Batari Basic offre un effetto speciale chiamato scorefade. Se
attivato, aggiunge una sottile ombreggiatura ai numeri dello score, dando loro un
senso di profondita. Basta aggiungere const scorefade = 1 all'inizio del tuo
programma.

rem Esempio di Score Sfumato
set romsize 2k

const scorefade = 1

Pagina 92 di 236

main loop
scorecolor = $9C ; Viola
score = 123456
drawscreen
goto main_ loop

Confrontando il risultato con e senza scorefade, noterai che i numeri appaiono meno
"piatti" e piu integrati con lo sfondo.

L'Effetto Arcobaleno: un Classico Atari

La funzione scorefade ha un "effetto collaterale™ molto amato dai programmatori
dell'epoca. Se, invece di usare un colore fisso, incrementi costantemente la variabile
scorecolor ad ogni frame, otterrai il classico effetto arcobaleno, un trucco iconico
dell'era Atari!

set romsize 2k
const scorefade = 1

dim color_timer = a

main loop
color timer = color timer + 1
scorecolor = color_timer
score = 123456
drawscreen
goto main loop
Questo codice fara ciclare i colori del punteggio attraverso l'intera tavolozza,

creando un effetto psichedelico e vibrante, spesso usato nelle schermate dei titoli o
per celebrare un record.

Attenzione! Se nel tuo gioco hai attivato le barre di stato con const pfscore =1,

I'effetto scorefade non € disponibile. Devi scegliere quale delle due funzionalita
grafiche usare per il tuo HUD, non possono coesistere.

Pagina 93 di 236

Capitolo 13 — Ottimizzazione e Debug Avanzato: La Caccia ai “Bug”

Cosa succede quando qualcosa nel nostro programma va storto? Quando lo schermo inizia a
tremare, un colore lampeggia in modo strano, o il gioco semplicemente si blocca? Benvenuto nel
mondo del debugging, I’arte investigativa di trovare e correggere gli errori, o “bug”, nel nostro
programma.

Inoltre, dobbiamo assicurarci che il nostro gioco non solo funzioni, ma funzioni bene. Deve
essere veloce e reattivo. Questo processo si chiama ottimizzazione. In questo capitolo,
indosseremo il cappello da detective e impareremo a rispettare la legge pit importante di tutte: la
corsa contro il raggio.

13.1 - Il Nemico Numero Uno: Lo “Screen Roll”

Il problema piu temuto da ogni programmatore Atari € il famigerato “screen roll” (scorrimento
dello schermo) o “jitter” (tremolio). Lo schermo trema, sfarfalla o inizia a scorrere
verticalmente senza sosta.

Questo e quasi sempre un problema di tempo. Significa che la logica nel tuo main loop (il
codice tra drawscreen e goto main) sta impiegando piu del suo “budget” di cicli CPU (circa
2700). La CPU é cosi impegnata a fare calcoli che arriva in ritardo all’appuntamento con il
raggio del televisore, e la sincronizzazione dell’immagine salta.

La soluzione e ottimizzare!

13.2 - Rimanere nel Budget: Strategie di Ottimizzazione
Cosa fare se il gioco e troppo lento? Non devi per forza eliminare delle funzionalita. Spesso
basta distribuire il carico di lavoro in modo piu intelligente.

Strategia 1: Sposta il Lavoro nel VBlank

Questa € la tecnica di ottimizzazione piu importante. Chiediti: “Questa operazione deve essere
eseguita per forza in questo esatto frame?”

« Il movimento del giocatore? Si, deve essere istantaneo.

* Decidere la prossima mossa di un nemico che si trova dall’altra parte dello schermo?
Forse no.

Tutta la logica che non € “urgente” puo essere spostata in una sezione speciale alla fine del tuo
programma, chiamata vblank. Il Vertical Blank e quel breve momento in cui il raggio del

televisore € “spento” e sta tornando in cima allo schermo. Durante questo intervallo, la CPU ha a
disposizione circa 1675 cicli extra per eseguire logica “pesante” senza interferire con il disegno.

. i1 tuo main loop finisce qui ...
goto main_loop

vblank
rem Sposta qui la logica "pesante" e non urgente
gosub update enemy ai logic
return

Questo libera immediatamente cicli preziosi nel tuo main loop, dove la velocita é piu critica.

Pagina 94 di 236

Strategia 2: L’Alternanza dei Frame

Invece di aggiornare I’TA di tutti i nemici 60 volte al secondo, perché non aggiornarne meta in un
frame e I’altra meta nel frame successivo? L’occhio umano non notera quasi mai la differenza,
ma il carico di lavoro sulla CPU per ogni singolo frame sara dimezzato!

dim frame counter = h

; ... nel main loop ...
frame counter = frame counter + 1

rem Aggiorna il Nemico 1 solo nei frame "pari"
if frame counter{0} then gosub update enemyl ai

rem Aggiorna il Nemico 2 solo nei frame "dispari"
if !frame counter{0} then gosub update enemy2 ai

Qui usiamo il bit 0 di frame_counter per distinguere tra frame pari (i numeri pari hanno sempre il
bit 0 = 0) e dispari (i numeri dispari hanno sempre il bit 0 = 1), alternando I’aggiornamento dei
nemici.

13.3 — La Lente d’Ingrandimento del Detective: Il Debug Visivo

A volte il gioco non trema, ma si comporta in modo strano. Uno sprite scompare, un colore €
sbagliato, un punteggio non si aggiorna. Come facciamo a sapere cosa c’¢ dentro una variabile
mentre il gioco sta girando?

Non abbiamo un debugger sofisticato, ma possiamo usare la grafica stessa per “visualizzare” i
dati!

Trucco 1: Visualizzare un Valore con i Colori Questo ¢ il trucco pit semplice e veloce. Se
vuoi controllare il valore della variabile a, assegnalo temporaneamente a un registro colore.

rem DEBUG: Mostra il valore di 'a' come colore di sfondo
COLUBK = a

Ora, mentre giochi, il colore dello sfondo cambiera in base al valore di a. Se il colore cambia
come ti aspetti, la variabile sta funzionando. Se rimane fisso o cambia in modo strano, hai
trovato un problema!

Trucco 2: Usare lo score come Monitor Se il tuo gioco usa il punteggio, puoi usarlo come
“monitor” di debug temporaneo, per capire se il codice “passa” nel punto giusto.

rem DEBUG: Mostra il valore 999 nello score
score = 999

Trucco 3: Usare i Suoni A volte vuoi sapere se una certa parte del codice viene eseguita.
Associa un suono a quell’evento!
; DEBUG: Suono di collisione

if collision(player(O, enemy) then gosub handle hit: AUDVO = 10 : AUDCO = 12 : AUDFO = 10

Se senti il “beep” nel momento sbagliato (o non lo senti affatto), sai che la tua logica di
collisione ha un problema.

Pagina 95 di 236

Capitolo 14 — E Adesso?

Congratulazioni!

Hai completato il tuo viaggio guidato attraverso le basi di Batari Basic. Ma questo non é un
punto di arrivo. E un punto di partenza. Hai appena aperto una porta su un universo vasto e
affascinante. Questo manuale ti ha fornito le fondamenta, ma il mondo della programmazione
Atari € molto piu grande. Abbiamo volutamente mantenuto il nostro viaggio focalizzato sul
Kernel Standard e su giochi contenuti in 4K di ROM, per darti le basi piu solide possibili.

Ora, cosa c’¢ oltre? Cosa puoi fare adesso con le tue nuove abilita? Questo capitolo ¢ la tua
mappa per le prossime avventure nel mondo della programmazione retro.

14.1 - Diventa un Maestro di Batari Basic

Ecco un assaggio delle tecniche piu avanzate che i maestri del codice usano per trasformare un
buon gioco in un capolavoro. Per approfondirle, le risorse della community sono il posto
migliore dove cercare.

« Funzioni (function) e Macro (macro): Oltre a gosub, esistono modi ancora piu potenti
per organizzare il codice. Le funzioni sono come subroutine che possono “restituire” un
risultato, mentre le macro ti permettono di creare i tuoi comandi personalizzati, rendendo
il codice incredibilmente pulito.

« Matematica a 16 bit e BCD (**, //, dec): Per calcoli piu complessi, come gestire numeri
pit grandi di 255 o lavorare con il punteggio in modo sicuro, esistono operatori speciali
per la matematica a 16 bit e per I’aritmetica BCD (dec).

« Spremere Ogni Bit: Le Variabili Nybble: | maestri sanno come stipare due contatori
(con valori da 0 a 15) in un singolo byte, trattandolo come due meta da 4 bit (un
“nybble”). E un’arte di ottimizzazione estrema.

« Variabili 4.4: Oltre alle variabili 8.8 (8 bit per la parte intera, 8 per quella frazionaria), la
libreria fixed_point_math.asm ci offre un altro strumento utile per situazioni specifiche:
le variabili a virgola fissa 4.4, che permettono di risparmiare preziosa memoria RAM.

14.2 - Guardare “Sotto il Cofano”: Piegare I’Hardware
Le vere magie avvengono quando si inizia a “parlare” all’hardware in modi che i creatori
originali non avevano previsto.

« Espandere la Memoria: il Bankswitching: il bankswitching e il trucco che permette di
creare cartucce da 8K, 16K o addirittura 32K. Un codice ben strutturato puo “delegare” il
lavoro a banchi di memoria ROM diversi, creando un’architettura a staffetta per gestire
giochi enormi.

« Grafica da Maestri: Kernel Alternativi e Chip Speciali: 1l nostro manuale si e basato
sul Kernel Standard, ma ¢ solo I’inizio. Esistono kernel specializzati come il Multisprite

Pagina 96 di 236

Kernel (per mostrare piu di 2 sprite sulla stessa riga) o il potentissimo DPC+ Kernel
(per grafica ad alta risoluzione e fino a 10 sprite multicolore).

Il Potere Assoluto: Assembly: Per il controllo totale, i programmatori scendono al
“livello del metallo” e scrivono in Assembly 6507, il linguaggio nativo della CPU. Con
Batari Basic, puoi inserire piccole porzioni di codice assembly per ottenere la massima
velocita o creare effetti grafici impossibili altrimenti.

Trucchi da Hacker: Rilevare Controller Extra: La community ha scoperto segreti
hardware incredibili, come la possibilita di rilevare se un controller Sega Genesis €
collegato e usare i suoi pulsanti extra per aggiungere piu azioni al tuo gioco!

14.3 - Unisciti alla Community: Non Sei Solo!

Una delle cose piu belle dello sviluppare per Atari 2600 oggi € che non sei solo. Esiste una
community globale incredibilmente attiva, amichevole e pronta ad aiutare altri appassionati. Le
risposte a tutte le tue future domande si trovano qui.

AtariAge Forums: E il cuore pulsante della community. Nelle sezioni dedicate allo
sviluppo per 2600 e al Batari Basic, puoi fare domande, condividere i tuoi progressi,
trovare tutorial e scoprire i nuovi, incredibili giochi realizzati da altri.

La Pagina di Batari Basic di Random Terrain: Questa ¢ I’enciclopedia definitiva,
piena di documentazione, esempi e guide approfondite.

GitHub: Il codice sorgente del compilatore Batari Basic e di molti giochi homebrew e
disponibile qui. Leggere il codice di altri sviluppatori & uno dei modi migliori per
imparare.

Non aver paura di fare domande. La community apprezza i nuovi arrivati ed &€ sempre felice di
condividere la propria conoscenza ed esperienza.

14.4 - Giocare sulla TV di Casa: L’Esperienza Autentica
Testare i giochi sull’emulatore Stella ¢ fantastico, ma niente batte la sensazione di giocare alla
propria creazione su un vero televisore. Oggi, questo é piu facile che mai.

L’Atari 2600+: Di recente, Atari ha rilasciato una nuova console moderna compatibile
con le vecchie cartucce, ma con un’uscita HDMI per qualsiasi TV.

La Cartuccia Magica (Flash Cart): Con una “cartuccia magica” moderna come la
famosa Harmony Cartridge, puoi giocare i tuoi giochi su una console originale o
moderna. Il processo e semplice:

1. Compili il tuo gioco con Batari Basic (premendo F5) per creare il file .bin.

2. Copi questo file .bin su una scheda SD.

Pagina 97 di 236

3. Inserisci la scheda SD nella Harmony Cartridge.
4. Inserisci la Harmony Cartridge nella tua console.

5. Accendi e giochi la tua creazione sul grande schermo!

[La memoria “sporca” nel vero hardware

Fai attenzione che a differenza degli emulatori, in un vero Atari 2600 il valore
iniziale delle variabili non & 0 ma e sconosciuto. Per essere sicuro che i tuoi
programmi funzioneranno anche su vero hardware, azzera manualmente il valore di
tutte le variabili questo codice:

a = t:b=0:c¢c=

Q.
Il
o
0}
Il
o
Hh
Il
o

«Q
Il
o
5
Il
o
P
Il
o

0 0
3=0:%k=0:1=0:m=0:n=0:0=0:p=02:9g=0:r=20
s=0:t=0:u=020

14.5 - Programmi da provare e appendici

Nella prossima parte di questo manuale troverai diversi listati di giochi che utilizzano tutte le
tecniche che hai visto. Ora sei perfettamente in grado di comprenderne il funzionamento! Inoltre
alla fine del manuale troverai appendici con riassunti, ulteriori informazioni e tecniche avanzate.

Buon divertimento!

Pagina 98 di 236

Parte 3: Giochi da provare

Cartucce originali dell’Atari 2600 (Immagine: mitchelaneous.com)

Pagina 99 di 236

Pagina 100 di 236

Ogni programma che segue € un gioco da provare, una “cartuccia digitale” che mette in pratica le
tecniche che hai imparato.

Considera ogni listato come un progetto da “smontare”. Leggi I’introduzione, analizza le
tecniche utilizzate e vai a ripassare i capitoli corrispondenti se hai qualche dubbio. Poi, tuffati nel
codice. Non aver paura di modificare, sperimentare e “rompere” le cose! Questo ¢ il modo
migliore per trasformare la teoria in vera abilita.

I listati completi di questi giochi si trovano subito dopo le scheda di presentazione.
Ricordatevi di aggiungere una riga vuota alla fine del programma se fate copia-incolla dei
listati!

1. Simple Pong (1 vs. CPU)
« Il Gioco: La versione piu pura del classico che ha dato inizio a tutto. Controlli la

racchetta destra, il computer controlla quella sinistra. Un punto di partenza eccellente per
capire la fisica di base e I’IA.

» Tecniche Principali Utilizzate:

— Fisica di Base: Il movimento e il rimbalzo della palla sono gestiti invertendo le
variabili di velocita (vedi Capitolo 8).

— 1A Semplice: La racchetta del computer segue ciecamente la palla (playerly =
bally), una forma basilare di intelligenza artificiale (vedi Capitolo 3).

— Struttura a Subroutine: La logica per i punti e le collisioni € organizzata in
subroutine pulite (vedi Capitolo 5).

— Clamping: Le racchette sono bloccate all’interno del campo da gioco (vedi
Capitolo 3).

Pagina 101 di 236

2. Advanced Pong (Pong con Ostacoli— 1 vs 1)
« Il Gioco: Una variante di Pong piu dinamica. Il giocatore puo muoversi in 4 direzioni e il

campo contiene ostacoli statici che influenzano la traiettoria della palla, aggiungendo
imprevedibilita.

« Tecniche Principali Utilizzate:

— Movimento a 4 Direzioni: Il giocatore non ¢ piu vincolato all’asse verticale,
aggiungendo strategia (vedi Capitolo 3).

— Interazione con il Playfield: La palla ora puo collidere con gli ostacoli del
playfield (collision(ball, playfield) -vedi Capitolo 4).

— Fisica di Rimbalzo Avanzata: Quando la palla colpisce un ostacolo, vengono
invertite entrambe le componenti della sua velocita.

3. Dynamic Pong (Racchetta che si Accorcia — 1 vs CPU)
« 1l Gioco: Questa versione introduce una meccanica di difficolta crescente. Ogni volta che
il giocatore perde una vita, la sua racchetta diventa piu corta.

» Tecniche Principali Utilizzate:

— Grafica Dinamica dello Sprite: L’altezza dello sprite player0O non e fissa. Il
programma usa subroutine per ridefinire la grafica dello sprite in tempo reale, in
base alle vite (vedi Capitolo 6).

— Indicatore di Stato Visivo: La dimensione della racchetta stessa funge da HUD,
comunicando istantaneamente al giocatore quante vite gli rimangono (vedi
Capitolo 14).

4. Killer Acorn (Ghianda Assassina)
« Il Gioco: Un classico sparatutto in arena fissa. Sei una ghianda, un nemico ti insegue.
Spara per guadagnare punti, evita di essere toccato per non perdere vite.

» Tecniche Principali Utilizzate:

— Animazione a Frame Multipli: Il nemico é animato con quattro sprite diversi,
gestiti da timer software (vedi Capitolo 6).

— 1A di Inseguimento: Il nemico si muove attivamente verso il giocatore.

— Gestione Proiettile Singolo: Un trucco comune per gestire lo sparo, usando la
posizione del missile come un flag (vedi Capitolo 5).

— Uso di rand: La casualita viene usata per rendere imprevedibile la riapparizione
del nemico (vedi Capitolo 12 e Appendice C).

Pagina 102 di 236

5. Simple Soccer (1 vs 1)
« Il Gioco: Un semplice gioco di calcio/hockey per due giocatori, che introduce la grafica

multicolore e la gestione del possesso palla.
Basato su “Fifa 1977 di https://8bitworkshop.com/
« Tecniche Principali Utilizzate:

— Opzione del Kernel playerlcolors: Questa opzione viene usata per dare a
playerl un aspetto multicolore, sacrificando ’'uso di missilel (vedi Capitolo 10).

— Gestione del Possesso Palla: Una variabile (p) funge da flag per determinare
quale giocatore controlla la palla.

— Logica di Salvataggio Posizione: Per gestire le collisioni con i muri in modo
robusto (vedi Capitolo 4).

6. The Watch (Il Guardiano del Castello)
« Il Gioco: Un gioco complesso che combina difesa, costruzione e combattimento. Il

giocatore deve ricostruire un muro raccogliendo mattoni e difendersi da un mostro.
« Tecniche Principali Utilizzate:

— Opzioni del Kernel Avanzate: pfcolors e pfheights sono usate per creare uno
sfondo ricco di dettagli (vedi Capitolo 10).

— 1A con Difficolta Crescente: La velocita e la resistenza del nemico aumentano
con il progredire dei livelli.

— Interazione Dinamica con il Playfield: 1l giocatore modifica il playfield in
tempo reale con pfpixel e pfread (vedi Capitolo 9).

— Aritmetica BCD per lo Score: Il punteggio viene gestito in modo sicuro (vedi
Capitolo 12 e Appendice C).

-
;l

g

oo oOooOo0D

Pagina 103 di 236

7. Minotaur (schermate multiple)

8. Snappy
Il Gioco: Un platform basato sul tempismo, eccellente esempio di come usare una

Macchina a Stati per gestire logiche di gioco complesse.

Il Gioco: Un’avventura a schermate multiple in cui il giocatore esplora un labirinto,
raccoglie oggetti e combatte un boss.

Tecniche Principali Utilizzate:

Esplorazione a Schermate Multiple: 1l cuore del gioco, gestito dalla variabile
room (vedi Capitolo 10).

Sistema di Inventario: | bit-flag (haslance, hasshield) tengono traccia degli
oggetti raccolti (vedi Capitolo 8).

A di Pattugliamento: 1l Minotauro si muove lungo un percorso predefinito.

Basato su: Snappy - an Atari 2600 game by Sebastian Mihai (2012)

Tecniche Principali Utilizzate:

Macchina a Stati Complessa: La variabile gamestate € il cervello del gioco,
controllando ogni singola fase dell’azione (vedi Capitolo 7).

Animazione basata su Timer: L’oscillazione della liana &€ un esempio di
animazione del playfield (vedi Capitoli 6 e 9).

Generazione del Seme Casuale (randseed): Tecnica avanzata per rendere
casuale la posizione di partenza (vedi Capitolo 12 e Appendice C).

Pagina 104 di 236

9. Gnamm (movimenti su griglia)
« Il Gioco: Una dimostrazione di come ricreare meccaniche complesse su un hardware
limitato.

« Tecniche Principali Utilizzate:

— Uso Intensivo dei Bit-Flag: La variabile b ¢ un “pannello di controllo” che
gestisce quasi tutta la logica del gioco (vedi Capitolo 8).

— Movimento su Griglia: Il movimento ¢ vincolato a “incroci” specifici (vedi
Capitolo 9).

— Opzione del Kernel pfcolors: Usata per dare al labirinto il suo aspetto bicolore
(vedi Capitolo 10).

il il il il
11N NNR S
ikl

D004

10. Highway Racer (corse in Autostrada con aritmetica a virgola fissa)
* Il Gioco: Dimostra come usare 1’aritmetica a virgola fissa per creare un senso di velocita

e movimento.
» Tecniche Principali Utilizzate:

— Aritmetica a Virgola Fissa: Il cuore del gioco. Le variabili 8.8 sono usate per
un’accelerazione e uno scorrimento fluidi (vedi Capitolo 11).

— Scrolling Verticale del Playfield: Il comando pfscroll down crea I’illusione della
strada che si muove (vedi Capitolo 9).

— Sistema di Danni: Invece di vite, usa un contatore di “danni” (vedi Capitolo 14).

11. Disc Dog (uso di rand)
« 1l Gioco: Un gioco unico e originale ispirato allo sport del “disc dog”. Controlli un cane

che deve prendere al volo un frisbee (playerl) lanciato da un lanciatore fuori campo. Il

Pagina 105 di 236

cane puo correre e saltare. Se il frisbee cade a terra, perdi una vita. Il gioco é a tempo e
diventa progressivamente piu difficile.

Tecniche Principali Utilizzate:

— 1A dell’Oggetto: Il frisbee non si muove in linea retta, ma segue una traiettoria
parabolica simulata, cambiando velocita e altezza in modo casuale, rendendo ogni
lancio imprevedibile (vedi Capitolo 8 e Appendice C per rand).

— Animazione Dinamica: La grafica del cane (playerQ) cambia in base alla
direzione e all’azione (corsa vs. fermo) (vedi Capitolo 6).

— Interazione Complessa: Il gioco gestisce piu stati: il cane che corre, che salta,
che prende il disco e che lo riporta al padrone (il blocco verticale sui lati).

— Manipolazione del Playfield: 1l punteggio delle vite e il timer non usano le
variabili score o pfscore, ma vengono disegnati “manualmente” sullo sfondo
usando pfpixel (vedi Capitolo 9).

Pagina 106 di 236

Simple Pong

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

rem

rem

set

rem
rem

dim

KK AR XA KA KKK

* Simple Pong (1 Giocatore vs. CPU) *
* *
* DESCRIZIONE DEL GIOCO: v
* Questa € una versione classica del gioco Pong per un R
* giocatore. L’utente controlla la racchetta destra (playerO) *
* muovendola verticalmente per respingere una palla (ball). v
* La racchetta sinistra (playerl) & controllata dal computer *
* e segue semplicemente la posizione verticale della palla. *

* L’obiettivo e segnare punti facendo passare la palla oltre la *

* racchetta del computer. Si perde una vita se la palla supera *
* la propria racchetta. *
* *
* TECNICHE DI PROGRAMMAZIONE UTILIZZATE: &
* - Fisica di Base: Il movimento della palla & gestito da due *
* variabili di velocita ("ballxvelocity’, ‘ballyvelocity’). *
* Quando la palla colpisce un muro o una racchetta, la sua *
* velocita viene invertita ('velocita = 0 - velocita’) per *
o simulare un rimbalzo. o
* - Intelligenza Artificiale (IA) Semplice: La racchetta del *
* computer non ha una vera logica, ma si limita a “inseguire” *
* la palla. La sua coordinata Y ('playerly’) viene *
* semplicemente impostata uguale a quella della palla ("bally’)*
* ad ogni frame, rendendola imbattibile a meno che la palla *
* non venga “spinta” via velocemente dopo una collisione. *
* - Gestione delle Collisioni e Subroutine: Il comando *
B “collision() " viene usato per rilevare i contatti. La B

€ logica di gestione degli eventi (punto segnato, vita persa, *

* collisione) e organizzata in subroutine (gosub..return’), *

* mantenendo il ‘main loop’ pulito e leggibile. *
* - Clamping: Vengono usati dei controlli "if’ per “bloccare” *
€ (clamping) la posizione delle racchette, impedendo loro di €
€ uscire dai limiti superiore e inferiore del campo da gioco. *

R Rk dh dh kb b b b b b b b b b b b b b b b b h b 3 i

—--- Direttive del Compilatore ---

romsize 4k
—-—— Sezione Definizioni Variabili (Alias) ---

Crea un alias per la velocita orizzontale della palla.

ballxvelocity = a

Pagina 107 di 236

rem Crea un alias per la velocita verticale della palla.
dim ballyvelocity = b
rem ‘g’ e un flag per gestire il primo avvio del gioco.

ag=0

rem --- Impostazioni Iniziali Grafica ---
rem Imposta i1l colore dello sfondo (verde).
COLUBK = 198
rem Imposta il colore del playfield (bianco per i bordi).
COLUPF = 14
rem Definisce la grafica del campo da gioco (bordi superiore e inferiore).
playfield:
0,0:0:0.0.0:9:9.0.9.9.9.9,0:9.0.0.9.9.0,0.9.0.0.0.:0.0.0.9.0.0.0.4

):9:9:9.9.9.9.9.9:9.9.9.0.:9.9.9.9.9.9.9.:9.9.9.0.:9.9.0.9.9.9.0:0:¢
end

rem Definisce la grafica della racchetta del giocatore (player0).
playerO:

%00011000

%00011000

%00011000

%00011000

%00011000

%00011000

%00011000

%00011000
end

rem Definisce la grafica della racchetta del computer (playerl).
playerl:

%00011000

%00011000

%00011000

%$00011000

%00011000

%00011000

Pagina 108 di 236

$00011000
$00011000

end

rem --- Stato 1: Inizializzazione Partita / Round ---

startNewGame

rem Questa etichetta viene chiamata per iniziare una nuova partita o un nuovo round.
rem Imposta la posizione iniziale della racchetta del giocatore.

playerOx = 140

playerOy = 49

rem Imposta la posizione iniziale della racchetta del computer.

playerlx = 15

playerly = 49

rem Imposta la posizione iniziale della palla al centro dello schermo.

ballx

80

bally 45

rem Imposta la velocita iniziale della palla.

ballxvelocity =1

ballyvelocity =1

rem Inizializza il contatore delle vite (non usato nel codice ma presente).
1=3

rem Imposta 1 colori delle racchette. Questi registri sono volatili.

COLUPO

140

COLUP1 28

rem Controlla se non e la prima partita in assoluto.

if g=1 then goto gameLoop

rem Se ¢ la prima partita, imposta il flag e vai alla schermata ‘premi fuoco’.
g=1

firstgame

COLUPO = 140

COLUPL = 28

drawscreen

if joyOfire then goto gamelLoop

goto firstgame

rem --- Ciclo di Gioco Principale ---
gameLoop

rem Reimposta i registri TIA volatili ad ogni frame.
COLUPO = 140

COLUPL = 28

rem Disegna il fotogramma corrente.

drawscreen

Pagina 109 di 236

rem --- Gestione Input Giocatore ---

if joyOup then playerOy = playerOy-1

if joyOdown then playerOy = playerOy+1l

rem Clamping: impedisce alla racchetta del giocatore di uscire dallo schermo.
if playerOy < 16 then playerOy = 16

if playerOy > 79 then playerOy = 79

rem --- IA del Computer ---

rem La racchetta del computer segue perfettamente la posizione Y della palla.
playerly = bally

rem Clamping: impedisce anche alla racchetta del computer di uscire.

if playerly < 16 then playerly = 16

if playerly > 79 then playerly = 79

rem --- Fisica della Palla ---
rem Aggiorna la posizione della palla in base alla sua velocita.
ballx = ballx + ballxvelocity

bally = bally + ballyvelocity

rem Fa rimbalzare la palla sui bordi superiore e inferiore.
if bally < 9 then ballyvelocity = 0 - ballyvelocity

if bally > 77 then ballyvelocity = 0 - ballyvelocity

rem --- Gestione Collisioni ---

rem Se la palla colpisce la racchetta del giocatore, chiama la subroutine di collisione.
if collision(player0, ball) then gosub playercollision

rem Se la palla colpisce la racchetta del computer, chiama la sua subroutine.

if collision(playerl, ball) then gosub computercollision

rem --- Gestione Punti e Vite ---

rem Se la palla supera la racchetta del giocatore, chiama la subroutine ‘vita persa’.
if ballx > 150 then gosub playerlostlife

rem Se la palla supera la racchetta del computer, chiama la subroutine ‘punto segnato’.

if ballx < 5 then gosub playerscores
rem --- Condizione di Fine Partita ---
rem Se le vite sono esaurite, vai alla schermata di Game Over.

if 1 < 1 then goto gameover

rem Ripete il ciclo di gioco.

goto gameLoop

rem --- Sezione delle Subroutine ---

Pagina 110 di 236

playercollision

rem Gestisce la collisione tra la palla e il giocatore.

rem Inverte la velocita orizzontale della palla.

ballxvelocity = 0 - ballxvelocity

rem Sposta la palla di qualche pixel per evitare collisioni multiple nello stesso frame.
ballx = ballx + ballxvelocity*5

bally = bally + ballyvelocity*5

return

computercollision

rem Gestisce la collisione tra la palla e il computer.
rem Inverte la velocita orizzontale della palla.
ballxvelocity = 0 - ballxvelocity

rem Sposta la palla per evitare collisioni multiple.
ballx = ballx + ballxvelocity*5

bally = bally + ballyvelocity*5

return

playerscores

rem Gestisce 1l’evento in cui il giocatore segna un punto.
rem Resetta la posizione della palla al centro.

ballx = 80

bally = 45

rem Resetta la velocita della palla.

ballxvelocity =1

ballyvelocity =1

rem Incrementa lo score del giocatore.

score = score + 10
return
playerlostlife

rem Gestisce 1l’evento in cui il giocatore perde una vita.
rem Decrementa il contatore delle vite.
1=1-1

rem Resetta la posizione della palla.

ballx = 80

bally = 45

return

rem --- Stato Finale: Game Over ---
gameover

rem attende fire per ricominciare.

rem fai sparire la palla

Pagina 111 di 236

bally 110

COLUPO = 140
COLUP1 = 28
drawscreen

if joyOfire then goto startNewGame

goto gameover

Pagina 112 di 236

Advanced Pong

rem KA A KA AR A AKX KK

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

rem

rem

set

rem
rem
dim
rem

dim

* Advanced Pong (1 Giocatore vs. CPU con Ostacoli)

*

* DESCRIZIONE DEL GIOCO:

* Questa € una variante del classico Pong, con delle aggiunte

* per renderlo piu dinamico. Il giocatore controlla liberamente

* la sua racchetta (player0O) in quattro direzioni all’interno
* del campo. Il campo da gioco contiene ostacoli statici

* (playfield) contro cui la palla pud rimbalzare. La racchetta
* del computer (playerl) continua a seguire la palla solo

* verticalmente. L’obiettivo e la gestione di punti/vite sono

* identici alla versione base.

* TECNICHE DI PROGRAMMAZIONE UTILIZZATE:

* - Movimento a 4 Direzioni: A differenza del Pong classico, il
* giocatore pud muovere la sua racchetta sia in orizzontale
& che in verticale, aggiungendo un elemento strategico.

* - Interazione con il Playfield: Il campo da gioco non € piu
* solo un bordo, ma contiene ostacoli. Il gioco utilizza

* “collision(ball, playfield) ™ per rilevare quando la palla
* colpisce questi ostacoli.

* - Fisica di Rimbalzo Avanzata: Quando la palla colpisce un
* ostacolo del playfield, vengono invertite entrambe le sue
* componenti di velocita ("ballxvelocity' e “ballyvelocity’),
* simulando un rimbalzo piu complesso rispetto a quello sui
2 bordi.

* - Definizione di Sprite Complessi: Gli sprite per le

€ racchette sono piu grandi e dettagliati rispetto a una

* semplice linea, utilizzando piu righe di dati binari.

*

* - Tutte le altre tecniche (IA, gestione collisioni, clamping, B
B subroutine) sono simili alla versione base di Pong. B
KA R A kA A A AR A Ak Ak Ak Ak Ak h kA A Ak hkh kA kA rhkhhkhkkhxkhx %

--— Direttive del Compilatore ---

romsize 4k

—-—— Sezione Definizioni Variabili (Alias) ---

Crea un alias per la velocita orizzontale della palla.
ballxvelocity = a

Crea un alias per la velocita verticale della palla.

ballyvelocity = b

Pagina 113 di 236

rem ‘g’ e un flag per gestire il primo avvio del gioco.

ag=0

rem --- Impostazioni Iniziali Grafica ---

rem Imposta il colore dello sfondo.
COLUBK = $81
rem Imposta il colore del playfield (bordi e ostacoli).

COLUPF = 68

rem Definisce la grafica del campo da gioco con ostacoli interni.
rem Nota: ‘x’ minuscolo viene trattato come ‘X’ maiuscolo.
playfield:

):0,0.0,0.0.0:9:9:9:9:0:0:0:0:9.9.0.0.0,0,0,0.0.0.9:0:0:0:0:0.0:¢

D19:0:0:0:9:0:0:0:9.9.9.9.9.9.9.9.9:0:0:0:0:0:0:0:0.0.0.0.9.9.9:¢

end

rem Definisce la grafica della racchetta del giocatore (playerQ).
player0:

$11111111

%00011000

%00011000

%00011000

$00111100

%00111100

%00111100

%00011000

%00011000

%00011000

$11111111
end

rem Definisce la grafica della racchetta del computer (playerl).
playerl:

%01111000

Pagina 114 di 236

$00011000
$00011000
%00011100
%00011111
$00011100
$00011000
%00011000
%01111000

end

rem --- Stato 1: Inizializzazione Partita / Round ---

startNewGame

rem Questa etichetta viene chiamata per iniziare una nuova partita o un nuovo round.
rem Imposta la posizione iniziale della racchetta del giocatore.

playerOx = 135

playerOy = 45
rem Imposta la posizione iniziale della racchetta del computer.

playerlx = 20

playerly 45

rem Imposta la posizione iniziale della palla al centro.
ballx = 80

bally = 45

rem Imposta la velocita iniziale della palla.
ballxvelocity =1

ballyvelocity =1

rem Inizializza il contatore delle vite.

1=3

rem Imposta i colori delle racchette. Questi registri sono volatili.
COLUPO = 140

COLUP1 28

rem Controlla se ¢ la prima partita in assoluto.

if g=1 then goto gameLoop

rem Se & la prima partita, imposta il flag e vai alla schermata ‘premi fuoco’.
g=1

firstgame

rem Imposta i1 colori e attende 1’input del giocatore.

COLUPO = 140
COLUPLl = 28
drawscreen

if joyOfire then goto gamelLoop

goto firstgame

Pagina 115 di 236

rem --- Ciclo di Gioco Principale ---
gameLoop

rem Reimposta i registri TIA volatili ad ogni frame.
COLUPO = 140

COLUPL = 28

rem Disegna il fotogramma corrente.

drawscreen

rem --- Gestione Input Giocatore (4 Direzioni) ---

if joyOup then playerOy = playerOy-1

if joyOdown then playerOy = playerOy+1

if joyOleft then playerOx = playerOx-1

if joyOright then playerOx = playerOx+1

rem Clamping Orizzontale: impedisce alla racchetta di uscire lateralmente.
if playerOx < 20 then playerOx = 20

if playerOx > 140 then playerOx = 140

rem Clamping Verticale: impedisce di uscire dall’alto e dal basso.

if playerOy < 16 then playerOy = 16

if playerOy > 79 then playerOy 79

rem --- IA del Computer ---

rem L’IA e la stessa: la racchetta del computer segue la palla verticalmente.
playerly = bally

rem Clamping per la racchetta del computer.

if playerly < 16 then playerly = 16

if playerly > 79 then playerly = 79

rem --- Fisica della Palla ---

rem Aggiorna la posizione della palla.

ballx = ballx + ballxvelocity

bally = bally + ballyvelocity

rem Fa rimbalzare la palla sui bordi superiore e inferiore del campo.
if bally < 9 then ballyvelocity = 0 - ballyvelocity

if bally > 77 then ballyvelocity = 0 - ballyvelocity

rem --- Gestione Collisioni ---

rem Se la palla colpisce la racchetta del giocatore..

if collision(player0, ball) then gosub playercollision
rem Se la palla colpisce la racchetta del computer..

if collision(playerl, ball) then gosub computercollision
rem Se la palla colpisce gli ostacoli del playfield..

if collision(ball,playfield) then gosub ballplayfieldcollision

Pagina 116 di 236

rem --- Gestione Punti e Vite ---
if ballx > 154 then gosub playerlostlife

if ballx < 5 then gosub playerscores

rem --- Condizione di Fine Partita ---

if 1 < 1 then goto gameover

rem Ripete il ciclo di gioco.

goto gameLoop

rem --- Sezione delle Subroutine ---
playercollision

rem Gestisce la collisione palla-giocatore.

rem Inverte la velocita orizzontale.

ballxvelocity = 0 - ballxvelocity

rem Sposta la palla per evitare collisioni multiple.
ballx = ballx + ballxvelocity*3

bally = bally + ballyvelocity*3

return

computercollision

rem Gestisce la collisione palla-computer.

rem Inverte la velocita orizzontale.

ballxvelocity = 0 - ballxvelocity

rem Sposta la palla per evitare collisioni multiple.
ballx = ballx + ballxvelocity*3

bally = bally + ballyvelocity*3

return

playerscores
rem Gestisce il punto segnato dal giocatore.

rem Resetta palla e velocita.

ballx = 80
bally = 45
ballxvelocity =1

ballyvelocity =1
rem Aumenta il punteggio.
score = score + 10

return
playerlostlife

rem Gestisce la vita persa dal giocatore.

rem Decrementa le vite.

Pagina 117 di 236

rem Resetta la palla.

ballx = 80
bally = 45
return

ballplayfieldcollision
rem Gestisce la collisione della palla con gli ostacoli.
rem Inverte entrambe le componenti della velocita per un rimbalzo diagonale.
ballxvelocity = 0 - ballxvelocity
ballyvelocity = 0 - ballyvelocity

W

rem Sposta la palla per evitare che rimanga “incastrata” nell’ostacolo.
ballx = ballx + ballxvelocity*3
bally = bally + ballyvelocity*3

return

rem --- Stato Finale: Game Over ---
gameover

rem Mostra la schermata finale e attende 1’input per ricominciare.
COLUPO = 140

COLUP1

28
bally = 110
drawscreen
if joyOfire then goto startNewGame

goto gameover

Pagina 118 di 236

Dynamic Pong

rem KK AR XA KA KKK

rem * Dynamic Pong (Racchetta che si Accorcia) *
rem * *
rem * DESCRIZIONE DEL GIOCO: *

rem * Questa variante di Pong introduce una meccanica di difficolta *
rem * crescente. Il giocatore controlla la racchetta destra (player0)*
rem * e affronta una racchetta controllata dal computer (playerl). v
rem * La caratteristica distintiva di questa versione e che la *

rem * racchetta del giocatore si accorcia ogni volta che perde una *

rem * vita, rendendo il gioco progressivamente piu difficile. 2
rem * *
rem * TECNICHE DI PROGRAMMAZIONE UTILIZZATE: *

rem * - Grafica Dinamica dello Sprite: La dimensione (altezza) dello *

rem * sprite del giocatore (player0) non e fissa. Il programma *
rem * utilizza una logica "if' nel "main loop per controllare il *
rem * numero di vite rimanenti (°1°). In base a questo valore, *

rem * viene chiamata una diversa subroutine ('pll3°, "pll2°, "plll")*

rem * che ridefinisce la grafica di “player0:° con altezze diverse.*
rem * - Organizzazione del Codice con Subroutine: Le diverse *

rem * definizioni grafiche dello sprite sono incapsulate in *
rem * subroutine separate. Questo mantiene il "main loop pulito e *
rem * rende chiara la logica di selezione dello sprite. *
rem * - Indicatore di Stato Visivo: La dimensione della racchetta *
rem * funge da indicatore visivo immediato per il giocatore del *
rem * numero di vite rimaste, integrando 1'HUD (Heads-Up Display) *
rem * direttamente nell'elemento di gioco principale. *
rem * - Le altre tecniche (fisica della palla, IA, collisioni, etc.) *
rem * sono identiche alla versione base del Pong. L3

rem R SRS EEEEEEEEEEEEEEEEEEEEEEE SRR EEEEE R R R R R R R R R R R R EEEEEEEEE RS S

rem --- Direttive del Compilatore ---

set romsize 4k

rem —--- Sezione Definizioni Variabili (Alias) --—-

rem Crea un alias per la velocita orizzontale della palla.
dim ballxvelocity = a

rem Crea un alias per la velocita verticale della palla.
dim ballyvelocity = b

rem 'g' ¢ un flag per gestire il primo avvio del gioco.

a=0

Pagina 119 di 236

rem --- Impostazioni Iniziali Grafica ---

rem Imposta il colore dello sfondo (verde).

COLUBK = 198

rem Imposta il colore del playfield (bianco per i bordi).

COLUPF = 14

rem Definisce la grafica del campo da gioco (bordi superiore e inferiore).
playfield:

):9:9.9.9.9.9.9.9:9.9.9.9.9.9.9.9.9.9.9:9.9.9.9.9.9.0.9.9.9.0:0.¢

0,0,0:0.0.0:9:9.0.9.9.9.9,0:9.0.0.9.9.0,0.0.0.0.0:0.0.0.9.0.0.0.4
end

rem Definisce la grafica della racchetta del computer (playerl).
playerl:

%00011000

%00011000

%00011000

%00011000

%00011000

%00011000

%00011000

%00011000

end

rem --- Stato 1l: Inizializzazione Partita / Round ---
startNewGame

rem Questa etichetta viene chiamata per iniziare una nuova partita o un nuovo round.
rem Imposta la posizione iniziale della racchetta del giocatore.

playerOx = 140

playerOy = 48

rem Imposta la posizione iniziale della racchetta del computer.

playerlx = 15

playerly = 45

rem Imposta la posizione iniziale della palla al centro.

ballx

80

bally = 41

Pagina 120 di 236

rem Imposta la velocita iniziale della palla.

ballxvelocity =1

ballyvelocity =1

rem Inizializza il contatore delle vite.

1=3

rem Imposta i1 colori delle racchette. Questi registri sono volatili.
COLUPO = 140

COLUPL = 28

rem Imposta la grafica iniziale della racchetta del giocatore (grandezza massima) .

gosub pll3

rem Controlla se e la prima partita in assoluto.
if g=1 then goto gameLoop
rem Se € la prima partita, imposta il flag e vai alla schermata 'premi fuoco'.
ag=1
firstgame
COLUPO = 140
COLUPL = 28
drawscreen
if joyOfire then goto gamelLoop

goto firstgame

rem --- Ciclo di Gioco Principale ---
gameLoop

rem Reimposta i registri TIA volatili ad ogni frame.

COLUPO = 140

COLUPL = 28

rem Grafica Dinamica: seleziona la dimensione della racchetta in base alle vite.
if 1=3 then gosub pll3
if 1=2 then gosub pll2

if 1=1 then gosub plll

rem Disegna il fotogramma corrente.

drawscreen

rem --- Gestione Input Giocatore ---

if joyOup then playerOy = playerOy-1

if joyOdown then playerOy = playerOy+l

rem Clamping: impedisce alla racchetta del giocatore di uscire dallo schermo.
if playerOy < 16 then playerOy = 16

if playerOy > 79 then playerOy = 79

Pagina 121 di 236

rem --- IA del Computer --—-

rem La racchetta del computer segue la posizione Y della palla.
playerly = bally

rem Clamping per la racchetta del computer.

if playerly < 16 then playerly = 16

if playerly > 79 then playerly = 79

rem --- Fisica della Palla ---

rem Aggiorna la posizione della palla.

ballx = ballx + ballxvelocity

bally = bally + ballyvelocity

rem Fa rimbalzare la palla sui bordi.

if bally < 9 then ballyvelocity = 0 - ballyvelocity

if bally > 77 then ballyvelocity = 0 - ballyvelocity

rem --- Gestione Collisioni ---
if collision(player0, ball) then gosub playercollision

if collision(playerl, ball) then gosub computercollision

rem --- Gestione Punti e Vite ---
if ballx > 150 then gosub playerlostlife

if ballx < 5 then gosub playerscores

rem --- Condizione di Fine Partita --—-

if 1 < 1 then goto gameover

rem Ripete il ciclo di gioco.

goto gameLoop

rem --- Sezione delle Subroutine di Gioco ---
playercollision

rem Gestisce la collisione palla-giocatore.
ballxvelocity = 0 - ballxvelocity

ballx = ballx + ballxvelocity*5

bally = bally + ballyvelocity*5

return

computercollision

rem Gestisce la collisione palla-computer.
ballxvelocity = 0 - ballxvelocity

ballx = ballx + ballxvelocity*5

bally = bally + ballyvelocity*5

return

playerscores

Pagina 122 di 236

rem Gestisce il punto segnato dal giocatore.

rem Resetta la palla e la sua velocita.

ballx

80

bally 45
ballxvelocity

ballyvelocity

1
1

rem Incrementa lo score.

score = score + 10

return

playerlostlife

rem Gestisce la vita persa.

rem Decrementa il contatore delle vite.

=1 =1

rem Resetta la palla.

ballx = 80

bally = 45

return

rem --- Stato Finale:
gameover

Game Over ---

rem Mostra l'ultimo stato e attende 1'input per ricominciare.

COLUPO = 140
COLUPL = 28
bally = 110

drawscreen

if joyOfire then goto startNewGame

goto gameover

rem --- Subroutine Grafiche:

pll3

rem Racchetta a grandezza massima (16 pixel di altezza)

player0:
%$00011000
%$00011000
%$00011000
%$00011000
%$00011000
%$00011000
%$00011000
%$00011000
%$00011000
%$00011000
%$00011000

Pagina 123 di 236

Dimensioni Racchetta Giocatore ---

quando le vite sono 3.

%$00011000
%00011000
$00011000
$00011000
%00011000
end
return
pll2
rem Racchetta a grandezza media (8 pixel di altezza) quando le vite sono 2.
playerO:
$00011000
$00011000
%$00011000
%$00011000
$00011000
%$00011000
%00011000
%$00011000
end
return
plll
rem Racchetta a grandezza minima (4 pixel di altezza) quando la vita e 1.
player0:
%$00011000
%$00011000
%00011000
%00011000
end

return

Pagina 124 di 236

Killer

Acorn

rem KK AR XA KA KKK

rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *
rem *

rem *

Killer Acorn (Ghianda Assassina)

DESCRIZIONE DEL GIOCO:

Il giocatore controlla una ghianda (player0) in un'arena
chiusa. Un nemico (playerl) insegue costantemente il
giocatore. Il giocatore pud sparare un proiettile (missileO)
per colpire il nemico, guadagnando punti e facendolo
riapparire in una posizione casuale. Se il nemico tocca il
giocatore, si perde una vita e punti. Il gioco termina

quando le vite si esauriscono.

TECNICHE DI PROGRAMMAZIONE UTILIZZATE:

- Intelligenza Artificiale (IA) Semplice: Il nemico (playerl)
implementa una logica di inseguimento ("chasing logic")
basata su semplici confronti tra le sue coordinate e quelle
del giocatore, muovendosi di un pixel alla volta verso di
lui.

- Animazione a Frame Multipli: L'animazione del nemico &
realizzata alternando quattro definizioni grafiche
diverse ('playerl:’). Un contatore ('v') rallenta
l'animazione per renderla visibile, mentre un secondo
contatore ('w') tiene traccia del frame corrente da
visualizzare.

- Gestione Proiettile Singolo: Il gioco permette di avere un

*

solo proiettile attivo alla volta. La sua posizione verticale*

("missileOy") viene usata come flag: un valore alto (>240)
indica che il proiettile & "inattivo" e se ne pud sparare
un altro.

- Gestione Vite e Punteggio: Il gioco utilizza variabili
standard per le vite ('a’) e lo score (score’).

- Uso di ‘rand': Il comando ‘rand viene usato per far
riapparire il nemico in una posizione orizzontale casuale

dopo essere stato colpito.

*

rem R Rk dh dh kb kb b b b b b b b b b b b b b b h b b b b b b b b b b b 2k b

set

rem —-
opening

rem De

romsize 4k

- Stato 1: Schermata Titolo ---

finisce la grafica statica del titolo.

Pagina 125 di 236

playfield:

XKoo ooXooo

o2 oXo o oXo oo

X

XXX . XX
6 0%o 0 0XoXo oo
o0 02s o X0 6o o
0 Xo 0 o MoXo oo

v X XUXXX L XXX XXX L XXX X L WXL

title

rem Imposta i colori per il titolo.

COLUBK = $60

COLUPF = 212

rem Disegna lo schermo e attende 1'input del giocatore per iniziare.

drawscreen

if joyOfire || joylfire then goto skiptitle

goto title

skiptitle

rem --- Inizializzazione Partita ---

rem Imposta i colori di gioco:

COLUPF = 0

COLUBK = 212

sfondo blu, playfield (muri) neri.

rem Imposta la posizione iniziale del giocatore e del nemico.

playerOx = 50
playerOy = 70
playerlx = 20

playerly = 8

rem Imposta un valore iniziale per lo score e il suo colore.

score = 103

scorecolor =1

rem Imposta le proprieta del missile:

missileOheight=1

missileOy=255

altezza e posizione iniziale fuori schermo.

rem Imposta la dimensione dello sprite del giocatore a larghezza doppia.

NUSIZO = 2

rem Inizializza il contatore delle vite.

a=3

rem Definisce la grafica del playfield di gioco (l'arena).

Pagina 126 di 236

playfield:

XXXX

end

rem
main

rem

rem
rem
if v
if v
if v
if v

goto

rem
rem
rem

rem

play
%000
%011
%001
%010
%010
%011
%000
%000

D:0:0:0:0:0:0:0:0:0:0.9.9.9.9.9.9.9.9.0.0.0.0.:0:0:0:0:0.¢

--- Ciclo di Gioco Principale ---

Incrementa i1l contatore 'v' per rallentare l'animazione del nemico.

v + 1

Logica di animazione: se 'v' raggiunge la soglia (7), cambia il frame
dello sprite del nemico in base al valore di 'w'.

=7 && w = 0 then goto ax

7 && w = 1 then goto bx

7 && w = 2 then goto cx
= 7 && w = 3 then goto dx

nextstep

--— Subroutine di Animazione Nemico ---
Queste quattro sezioni (ax, bx, cx, dx) definiscono i 4 frame di
animazione per playerl. Ognuna reimposta il contatore 'v' e

aggiorna il contatore di frame 'w'.

erl:

01000
01000
01000
10000
11110
10000
11000
11000

Pagina 127 di 236

end
goto nextstep
bx
v =20
w =2
playerl:
%00100000
%01110000
%$00101000
%01010000
$01011110
$01110000
%$00011000
%$00011000
end
goto nextstep
cx
v =20
w =3
playerl:
%00011000
%00011000
%00101000
%01010000
%01011110
%01110000
%00011000
%00011000
end
goto nextstep
dx
v =20
w =0
playerl:
%00100000
%01110000
%00101000
%01010000
%01011110
%01110000
%$00011000
%00011000

end

Pagina 128 di 236

goto nextstep

nextstep
rem Definizione grafica dello sprite del giocatore (la ghianda).
player0:
%$00111100
$01011010
$00100100
%$00111100
%00011000
$00011000
%00010000
%00010000

end

rem --- Logica del Proiettile ---

checkfire

rem Controlla se un missile & gia attivo (missileOy <= 240).
if missileOy>240 then goto skip

rem Se & attivo, lo muove verso l'alto.

missileOy = missileOy - 2

goto draw

skip
rem Se non ci sono missili attivi, controlla se il giocatore preme 'fuoco'.
rem Se si, crea un nuovo missile alla posizione del giocatore.

if joyOfire then missileOy=playerOy-2:missileOx=player0x+4

draw
rem Disegna il fotogramma corrente.

drawscreen

rem --- Logica di Movimento e Limiti ---

rem Clamping: impedisce al giocatore di uscire dai bordi dello schermo.
if playerOx < 18 then player0Ox = 18

if playerOx > 136 then playerOx = 136

if playerOy < 8 then playerOy = 8

if playerOy > 80 then playerOy = 80

rem IA Semplice: il nemico (playerl) insegue i1l giocatore (playerQ).
if playerly < playerOy then playerly = playerly + 1
if playerly > playerOy then playerly = playerly - 1

if playerlx < playerOx then playerlx = playerlx + 1

Pagina 129 di 236

if playerlx > playerOx then playerlx = playerlx - 1

rem --- Gestione Collisioni ---

rem Rileva la collisione tra il missile e il nemico.
if collision(missileO,playerl) then goto point

rem Rileva la collisione tra il nemico e il giocatore.

if collision(player0,playerl) then goto dead

rem --- Gestione Input Giocatore ---
if joyOup then playerOy = playerOy-1
if joyOdown then playerOy = playerOy+1
if joyOleft then playerOx = playerOx-1

if joyOright then playerOx = playerOx +1

rem Ripete il ciclo di gioco.

goto main

rem --- Subroutine di Evento: Nemico Colpito ---
point

rem Incrementa lo score.

score=score+100

rem Fa riapparire il nemico in una nuova posizione casuale in cima allo schermo.
playerlx=rand/2

playerly=0

rem Disattiva il missile.

missileOy=255

rem Torna al ciclo principale.

goto main

rem --- Subroutine di Evento: Giocatore Colpito ---
dead

rem Decrementa lo score.

score=score-1

rem Fa riapparire il nemico in una nuova posizione casuale.
playerlx=rand/2

playerly=0

rem Disattiva il missile.

missileQy=255

rem Decrementa il contatore delle vite.

a=a-1

rem Se le vite sono esaurite, passa alla schermata di Game Over.
if a = 0 then goto resetfire

rem Altrimenti, torna al ciclo principale.

Pagina 130 di 236

goto main

rem --- Stato Finale: Game Over / Riavvio ---
resetfire
rem Nasconde il giocatore.
player0y=200
rem Usa un flag temporaneo 'f' per rilevare una singola pressione del fuoco.
f=0
if joyOfire || joylfire then f = 1
rem Se il giocatore non preme fuoco, rimane in un loop che mostra la schermata titolo.
if £ = 0 then goto opening
rem Se preme fuoco, esce dal loop e riavvia.
drawscreen

goto resetfire

Pagina 131 di 236

Simple Soccer

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

set

KK AR XA KA KKK

* Simple Soccer (2 Giocatori) *
* *
* DESCRIZIONE DEL GIOCO: v
* Un gioco di calcio/hockey a due giocatori. Ogni giocatore *
* controlla il proprio personaggio (player0 e playerl) in *
* quattro direzioni. I giocatori possono "dribblare" la palla *
* (ball) tenendola vicina a sé e tirare premendo il pulsante &
* di fuoco. L'obiettivo e segnare nella porta avversaria. Le 2
* porte sono le aree aperte ai lati del campo. Il gioco *
* gestisce 1l possesso palla e il tiro. *
* *
* TECNICHE DI PROGRAMMAZIONE UTILIZZATE: &
* - Kernel Option "playerlcolors : Questa opzione avanzata del 2

* kernel viene usata per dare a "playerl’ un aspetto *
* multicolore, permettendo di definire un colore diverso per *
* ogni linea dello sprite. Questo sacrifica l'uso del *
* missilel, ma arricchisce notevolmente la grafica. *
* - Gestione del Possesso Palla: Una variabile ('p’) funge da *
* flag per determinare quale giocatore ha il possesso della *
* palla. Quando la palla non e in fase di tiro, la sua *
* posizione viene costantemente aggiornata per "attaccarsi" *
2 al giocatore in possesso. *
* - Gestione del Tiro: Una variabile (°z°) funge da flag di *
* stato per il tiro. Se "z° & 0, la palla & in possesso. Se & 1,*
* la palla e stata tirata da playerO e si muove da sola. Se e 2,*
* la palla e stata tirata da playerl. *
* - Logica di Salvataggio Posizione: Per gestire le collisioni €

€ con i muri, il programma salva le coordinate "valide" dei €
B giocatori all'inizio di ogni frame ('e, £, g, h'). Se viene *
* rilevata una collisione, le coordinate vengono ripristinate *
€ a quelle precedenti, impedendo al giocatore di passare &
* attraverso i muri. *
* - Gioco a Due Giocatori: Il codice legge l'input da entrambi i *
* joystick ("joy0" e “joyl'), permettendo a due persone di *
* glocare contemporaneamente. *
Rk kb b b kb b b b b b b bk b b b b kb b b b b b b b b b bk kb bk ek kb kb b b b b b b e b kb b b bk kb e

--— Direttive del Compilatore ---
Abilita l'opzione del kernel per avere uno sprite playerl multicolore.

romsize 4k

Pagina 132 di 236

set kernel options playerlcolors

rem --- Definizioni Grafiche Iniziali ---
rem Definisce il campo da gioco con le due porte laterali.
playfield:

):0:0:9:9:9.0.9.9:9:9.9.9.9.0.0:0.9.9.9.9.0.0:0:9.9.9.0.0:0:0°¢

X Xooocooooooooooc00000 X X
X6 606000000000000000000000006000 X
X00000000000000000000000000000 X
X60000000000000000000000000000 X
X600060000000000000000000000000 X
X600060000000000000000000000000 X
X00000000000000000000000000000 X
X00000000000000000000000000000 X
X Xooocooooooo000000000 X X

):9:9.9.9.9.9.9.9:9.9.9.9:9.9.9.9.9.9.9.9.9.9.9.:9.9.0.9.9.9.0.¢
end

rem Definisce la grafica per il giocatore 1 (playerO).
player0:

$00100010

%00010100

%00001000

%00111110

%$00001000

$00011100

%$00011100

%$00011100
end

rem Definisce la grafica per il giocatore 2 (playerl).
playerl:

%01000100

%$00101000

$00010000

%01111100

%00010000

$00111000

$00111000

%00111000

end
rem --- Impostazioni di Gioco Iniziali ---

rem Imposta il colore di sfondo iniziale.

COLUBK = $OF

Pagina 133 di 236

rem Imposta la larghezza del missileO (non usato per sparare ma il registro esiste).
NUSIZO = $30
rem Azzera lo score e imposta il colore del testo.
score = 00000

scorecolor = $08

rem --- Inizializzazione Variabili ---

rem Le variabili non hanno alias 'dim', ma rappresentano:
rem a, b: coordinate x, y del giocatore 0.

a =175

b =75

rem c, d: coordinate x, y del giocatore 1.

c =175

d = 25

rem z: stato della palla (0=in possesso, l=tiro p0, 2=tiro pl).
z =0

rem p: possesso palla (0=p0, 1=pl).

p=20

rem Imposta le posizioni iniziali degli oggetti di gioco.

playerOx = a : playerOy = b

playerlx = c : playerly = d
ballx = x : bally =y
rem --- Ciclo di Gioco Principale ---

main
rem Imposta 1 registri TIA volatili ad ogni frame.
COLUP1 = $80

COLUPO

$40

COLUBK SC4

COLUPF = SOE

rem Salva le coordinate correnti dei giocatori prima di ogni movimento.

e = a
f=5>
= @
=d

rem Tabella colori per lo sprite multicolore playerl.
playerlcolor:

$38;

$3R;

SF4;

SF6;

Pagina 134 di 236

$0C;
$1A;
$D8;
$D2;
end
rem Disegna il fotogramma corrente.

drawscreen

rem --- Gestione Input Giocatori ---

rem Legge 1l'input dal joystick 0 per muovere il giocatore 0.
if joyOleft then a = a - 1

if joyOup then b = b -1

if joyOdown then b = b + 1

if joyOright then a = a + 1

rem Legge 1l'input dal joystick 1 per muovere il giocatore 1.

if joylleft then ¢ = c - 1

Il
fol;
|
=

if joylup then d

Il
Q.
+
—

if joyldown then d
if joylright then ¢ = c + 1

rem --- Logica della Palla (Possesso e Tiro) ---

rem Se il giocatore in possesso preme 'fuoco', imposta lo stato 'tiro'.
if p = 0 && joyOfire then z =1

if p = 1 && joylfire then z = 2

rem Se la palla e in possesso (z=0), la "attacca" al giocatore corretto.

if z = 0 && p = 0 then ballx = a + 5 : bally = b - 10

if z = 0 && p = 1 then ballx = ¢ + 4 : bally = d + 2

rem Se la palla e in stato 'tiro', la muove in verticale.
if z = 1 then bally = bally - 1

if z = 2 then bally = bally + 1

rem Aggiorna le coordinate finali degli sprite.

playerOx = a : playerOy =D
playerlx = ¢ : playerly = d
rem --- Gestione Reset e Collisioni ---

rem Controlla se il pulsante di reset e stato premuto.

if switchreset then goto hardReset

rem Se la palla tocca un giocatore, quel giocatore ne ottiene il possesso.
if collision(ball, player0) then goto saveO
if collision(ball, playerl) then goto savel

rem Se un giocatore tocca i muri...

Pagina 135 di 236

if collision(player0, playfield) then goto playerOHitWall

if collision(playerl, playfield) then goto playerlHitwall
rem Impedisce ai giocatori di entrare nelle porte avversarie.
if playerOy < 30 then goto playerOHitWall

if playerly > 66 then goto playerlHitWall

rem Se la palla tocca il playfield (muri o porte)...

if collision(ball, playfield) then goto shoot

rem Ripete il ciclo di gioco.

goto main

rem --- Subroutine di Gestione Collisioni Muri ---
playerOHitwall

rem Ripristina la posizione del giocatore 0 a quella valida precedente.
a=e

b =f

goto main
playerlHitwall

rem Ripristina la posizione del giocatore 1 a quella valida precedente.
c =g

d=h

goto main

rem --- Subroutine di Gestione Possesso Palla ---
savel

rem Il giocatore 0 ora ha il possesso.

p =20

rem La palla smette di essere in 'tiro'.
z =0

goto main
savel

rem Il giocatore 1 ora ha il possesso.
p=1

rem La palla smette di essere in 'tiro'.
z =0

goto main

rem --- Subroutine di Gestione Tiro in Porta ---

shoot

rem Controlla se la palla ha colpito un muro laterale o una delle porte.
rem Le porte si trovano tra x=41 e x=119.

if ballx > 41 && ballx < 119 then goto hit

rem Se ha colpito un muro laterale, resetta le posizioni.

Pagina 136 di 236

goto reset
hit
rem Controlla in quale meta del campo si trova la palla per determinare chi ha segnato.
if bally < 50 then goto playerOScore
if bally > 50 then goto playerlScore
goto reset
playerOScore
rem Il giocatore 0 ha segnato.
score = score + 1
rem La palla passa al giocatore 1.
p=1
goto reset
playerlScore
rem Il giocatore 1 ha segnato.
score = score + 1000
rem La palla passa al giocatore 0.
p=20

goto reset

rem --- Subroutine di Reset Posizioni ---
reset

rem Riporta i1 giocatori alle posizioni iniziali.

a =175
b = 75
c =175
d = 25

rem Resetta lo stato della palla a 'in possesso'.
z =0

goto main

rem --- Subroutine di Hard Reset ---
hardReset
rem Azzera completamente lo score.
score = 000000
rem Restituisce il possesso iniziale al giocatore O.
p =20
rem Chiama la subroutine di reset delle posizioni.

goto reset

Pagina 137 di 236

The Watch

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

RR Rk ik dh ki kb ik kb kb b bk 2k b bk R h kb Tk h kb b b Rk R R R R R R kR b R R R R kR E R R b b h R b

* The Watch (Il Guardiano del Castello) i
* *
* DESCRIZIONE DEL GIOCO: &

* I1 giocatore controlla un cavaliere (il Ranger, player0) che *

* deve difendere un muro da un mostro (il Wright, playerl). Il R

* mostro insegue i1l giocatore e tenta di distruggerlo. Il *
* giocatore puo attaccare con la sua spada (missile0) per *
* respingere e infine sconfiggere il mostro. Il giocatore deve 2

* anche raccogliere mattoni (ball) e portarli sul muro per *

* ricostruirlo. Il gioco diventa progressivamente piu difficile, *

* con il mostro che diventa piu veloce e resistente. *
* *
* TECNICHE DI PROGRAMMAZIONE UTILIZZATE: &
* - Kernel Options Avanzate: “pfcolors’™ e “pfheights® wvengono *
* usate per creare un playfield multicolore e con blocchi di *
* altezze diverse, permettendo una grafica di sfondo piu ricca.*

* - IA con Difficolta Crescente: La velocita del nemico e 2
* controllata da un timer (°d’). Ad ogni livello completato, *
* il valore di "d’ diminuisce, rendendo il nemico piu veloce. *
* Anche la sua resistenza ('a’, colpi per ucciderlo) aumenta. *
* - Interazione Dinamica con il Playfield: Il giocatore pud *
2 modificare il playfield in tempo reale. Raccoglie un mattone *

* (ball) e, quando tocca il muro, usa " pfpixel ... on per *
* "disegnare" un nuovo blocco, ricostruendo la fortificazione. *
2 Il comando “pfread’ viene usato per verificare se un blocco *
* e gia stato posato. *
* - Animazione a Frame Multipli: Il giocatore ha un'animazione L3
& di camminata (framel, frame2) e una di attacco (dosword). &
* - Gestione del Punteggio BCD: Viene usato l'approccio *
* consigliato con alias ai singoli byte dello score (' _scl’, *
w ' sc2°, ' sc3') per controllare in modo sicuro condizioni w
i come il Game Over (score < 0). &
* - Effetti Sonori Temporizzati: Gli effetti sonori per colpi e *
* vittorie sono gestiti tramite loop che si ripetono per un *
& numero fisso di frame, creando suoni di breve durata. &
RR Rk ik kb kb b b b b b b b b b b b b kb b b b b b b b b b e bk kb ek ek kb kb b kb b b e b kb b b b b kb b

--— Sezione Definizioni Variabili (Commenti originali mantenuti) -

a: numero di colpi per uccidere i wright

rem b: posizione orizzontale del ranger (p0_ x)

Pagina 138 di 236

rem c: posizione verticale del ranger (p0_y)

rem d: velocita' con cui il wright insegue il disertore (in funzione di t)
rem e: suono dell'uccisione di Wright

rem f: timer per l'animazione del player0 che cammina

rem g: suono wright colpito

rem h: distanza del wright dopo essere stato pugnalato (colpo)

rem i: possesso mattone (ball)

rem j-u: flag per le sezioni del muro ricostruite

rem t: timer per velocita' wright inseguimento del ranger (vedi d)
rem v: movimento playerl (wright) orizzontalmente

rem w: movimento playerl (wright) in verticale

rem y: suono del castello costruito

rem --- Direttive del Compilatore ---
set romsize 4k

set kernel options pfcolors pfheights

rem --- Stato 0: Inizializzazione Globale e Schermata Titolo ---
init
rem Imposta i colori iniziali.

COLUP1

SA6

COLUBK

SOE

rem Definizione grafica iniziale del nemico (Wright).
playerl:
%$11110111
%$01110111
%00011011
%00011011
%00011011
%00110011
%00110110
%00110110
%10111100
%10111101
%$10111101
%$10111101
%10111101
%10111101
%$10111101
%$11111110
%$11111000
%01111000

Pagina 139 di 236

$00100100

$00101100

$01000010

$01101010

$01000010

$00111100

end

rem Posiziona il nemico fuori dallo schermo.

playerlx = 0 : playerly = 200

rem Definisce le altezze per ogni linea del playfield.
pfheights:
8

©® ©© © o

© ©© © o

[ee}

end

rem Definisce i colori per ogni linea del playfield.
pfcolors:

$00

SAA

SAA

SAA

SAC

SAC

SAC

SAE

SAE

SAE

SAE
end

rem Posiziona palla e giocatore fuori schermo.
ballx = 0

bally = 200

playerOx = 0 : playerOy = 200

Pagina 140 di 236

rem --- Alias per le variabili di gioco principali ---

dim p0 x = b

dim p0_y @

v=152

w=40

rem Alias per i byte dello score (gestione BCD).

dim scl = score

dim sc2 = score+l

dim sc3 = score+2

rem Inizializzazione parametri di difficolta.

a =4
d = 30
h = 20

rem Grafica della schermata titolo.

playfield:
2RI 6 6000000000000000000000 X.X
XXoooooooo XXX X X XXXooons XXXXX
XXoooooooo o oXoXoXooooocoooo XX
XXoooooo0 Xo XXX XXX.ooovvnn X
XoXoooooo o oXoXoXoooooooo X.X
XXooooooo Xo XX XXXooooonn X.X
286 00000000000000000000000000 XX
XXovo XL X XXX XXX XXX XX, .. X

XX XXX XXX WXL XXX L L WX
X.XX. .. X. X, . XXX. . X..X...X.X..XX
XXXX. .. X.X. . X.X. . X, . XXX.X.X...X
end

rem Silenzia i canali audio.

AUDV1 = 0
AUDC1 = 0
AUDF1l = 0
firstscreen

rem Loop della schermata titolo: attende la pressione di 'fuoco'.
drawscreen
if joyOfire then goto preloop

goto firstscreen
rem --- Stato 1l: Preparazione del Livello ---

preloop

rem Posiziona il giocatore, il nemico e il mattone per 1l'inizio del round.

Pagina 141 di 236

playerOx = 56 : playerOy = 96
playerlx = 80 : playerly = 60
ballx

81

bally 78
rem Definisce la grafica del muro da ricostruire.

playfield:

end
rem Resetta la posizione del nemico e i flag di costruzione del muro.

v= 152 : w = 40

jJ =0 : k 0 1 =0 o=20 p =20 qg=20 r =20 s =0 u=0
drawscreen

rem --- Ciclo di Gioco Principale ---
loop

rem Controlla la pressione del tasto Reset della console.

if switchreset then goto init

rem Se tutte le sezioni del muro sono costruite, passa allo stato di 'livello completato'.

if 3 =16&& k=18 1=1%6&0=1¢&p=1¢&&g=1%&&r=12¢%& s =1 && u=1 then goto castl
ecompleted

rem Impostazioni dei registri TIA per il gioco.
ballheight = 3

CTRLPF = $21

playerlx=v

playerly=w

rem --- Logica di Animazione e Timer ---

rem Incrementa i1 timer per l'animazione e la velocita del nemico.
f=f+1

t=t+1

if t>30 then t=0

Pagina 142 di 236

rem Controlla la condizione di Game Over (score andato in negativo).

if _scl = $99 && _sc2 = $99 && _sc3 <= $99 then score = score +1 : goto firstscreen

rem --- Gestione Movimento e Animazione Giocatore ---

rem Azzera il contatore di animazione.

if £ = 20 then £ = 0

rem Seleziona il frame di animazione in base al timer 'f'.
if £ < 10 then gosub framel

if £ > 10 && £ < 20 then gosub frame?2

if £ > 10 && £ < 20 && !'joyOleft && !joyOright && !joyOup && !joyOdown then gosub framel

rem Gestione input per movimento. Usa l'aritmetica a complemento a due per il movimento.
p0_x =0

if joyOleft && !joyOfire then REFPO = 8 : p0 x = 255 : playerOx = playerOx + pO x : if i
n ballx = playerOx - 3 : bally = playerOy - 11

if joyOright && !joyOfire then REFPO = 0 : p0 x = 1 : playerOx = playerOx + p0 x : if 1
ballx = playerOx - 3 : bally = playerOy - 11

pO_y = 0

if joyOup then pO0 y = 255 : playerOy = playerOy + pO y : if i = 1 then ballx = playerOx
lly = playerOy - 11

if joyOdown then p0 y = 1 : playerOy = playerOy + pO y : if 1 = 1 then ballx = playerOx
1lly = playerOy - 11

rem --- Gestione Attacco Giocatore ---

rem Imposta la dimensione orizzontale della spada.

NUSIZO = $30

rem Se preme fuoco, mostra la spada e perde il possesso del mattone.

if joyOfire then missileOx = playerOx + 9 : missileOy = playerOy - 7 : i = 0 : gosub dos
e missileOx = 0 : missileOy = 0

rem Clamping: impedisce a giocatori e oggetti di uscire dallo schermo.
if playerOx < 38 then player0Ox = 38
if playerOx > 124 then playerOx = 124

if playerOy < 17 then playerOy = 17

if playerOy > 89 then playerOy 89

if ballx < 37 then ballx

37
if bally < 11 then bally = 11

if bally > 78 then bally 78

if playerlx > 152 then playerlx = 152

rem Imposta i colori di gioco.
COLUBK = $0E

COLUP1L SA6

rem Disegna il fotogramma.

Pagina 143 di 236

= 1 the

= 1 then

word els

drawscreen

rem --- Gestione delle Collisioni ---

rem Collisione spada-nemico: se il nemico ha ancora vita, lo respinge.

if collision(missileO,playerl) && a <> 0 then v =v + h : a = a - 1: goto strikewright

rem Se il nemico non ha piu vita, lo sconfigge.

if collision(missile0,playerl) && a = 0 then v = 152 : score = score + 1 : goto killwright
rem Collisione giocatore-nemico: resetta posizione, perde punti.

if collision(player0,playerl) then playerOx = 56 : playerOy = 96 : i = 0 : score = score -1 : if
d =30 then v = v + 5

rem Collisione giocatore-mattone: prende possesso del mattone.
if collision(ball,player0) then ballx = playerOx - 3 : bally = playerOy - 11 : i =1
rem Collisione mattone-muro: posa il mattone.

if collision(ball, playfield) then gosub putoncastle

rem --- IA del Nemico ---
rem Muove il nemico verso il giocatore solo se il timer 't' supera la soglia 'd'.
if t<d then goto skipmovement

if v < playerOx then v=v+l

Il
S

if v > playerOx then v=v-1 : AUDV1

if w < playerOy then w=w+l

if w > playerOy then w=w-1 : AUDV1 = 4
skipmovement
rem Ripete il ciclo di gioco.

goto loop

rem --- Subroutine per Costruire il Castello ---
putoncastle

rem Controlla la posizione del mattone e, se lo spazio e libero (!pfread), disegna un nuovo pixe
1.

if bally > 11 && bally < 17 && !pfread(0,1) then pfpixel 0 1 on : 1 = 0 : ballx = 81 : bally = 3
9 : 3 =1

if bally >= 17 && bally < 25 && !pfread(l,2) then pfpixel 1 2 on : i =0 : ballx = 81 : bally
75 k=1

if bally >= 25 && bally < 35 && !pfread(3,3) then pfpixel 3 3 on : i = 0 : ballx = 81 : bally
11 : 1 =1

if bally >= 35 && bally < 41 && !pfread(2,4) then pfpixel 2 4 on : i = 0 : ballx = 81 : bally =
59 : o =1

if bally >= 41 && bally < 49 && 'pfread(l,5) then pfpixel 1 5 on : i = 0 : ballx = 81 : bally =
19 : p=1

if bally >= 49 && bally < 56 && !pfread(l,6) then pfpixel 1 6 on : i = 0 : ballx = 81 : bally =
53 : g=1

if bally >= 56 && bally < 65 && !pfread(3,7) then pfpixel 3 7 on : 1 = 0 : ballx = 81 : bally =
27 : r =1

if bally >= 65 && bally < 73 && !pfread(0,8) then pfpixel 0 8 on : i = 0 : ballx = 81 : bally =
19 : s =1

Pagina 144 di 236

if bally >= 73 && bally < 78 && !pfread(l,9) then pfpixel 1 9 on : i = 0 : ballx = 81 : bally
65 : u =1

return

rem --- Subroutine Grafiche Giocatore ---
framel
rem Primo frame dell'animazione di camminata.
player0:
%$11111100
%$11011000
%$11011000
%$11011000
%$11011000
%$11111000
%$10011010
%$11001010
%$11101111
%$11111010
%01111010
%$10110010
%$11001010
%$01001010
%$01001010
$00110000
end
return
frame?2
rem Secondo frame dell'animazione di camminata.
player0:
%$11101100
%$11001110
%$11001100
%$11011100
%$11011000
%$11111000
%$10011010
%$11001010
%$11101111
%$11111010
%01111010
%$10110010
$11001010
$01001010

Pagina 145 di 236

%$01001010
%$00110000
end
return
dosword
rem Frame per l'animazione di attacco con la spada.
player0:
%11111100
%$11011000
%$11011000
%$11011000
%$11011000
%$11111001
%$10011001
%$11001111
%$11101001
%$11111001
%$01111000
%$10110000
%$11001000
%01001000
%01001000
$00110000
end

return

rem --- Subroutine Audio ed Eventi ---
killwright

rem Suono per la sconfitta del nemico.

AUDVL = 4
AUDCL = 7
AUDF1l = e

e =e +1

drawscreen

if e < 10 then killwright

e =0

AUDV1 = 0 : AUDCl = 0 : AUDFl = 0

score = score + 1

rem Aggiorna la resistenza del nemico per il prossimo livello.
if d <= 30 then a = 4

if d <= 20 then a 2

if d <= 10 then a

0

goto loop

Pagina 146 di 236

strikewright
rem Suono per il nemico colpito.
AUDV1 = 4

AUDCL

7
AUDF1l = 2
g=g+t1
drawscreen
if g < 5 then strikewright
g=20
AUDV1 = 0 : AUDC1 = 0 : AUDFl = 0
goto loop
castlecompleted

rem Suono per il completamento del muro.

AUDVL = y

AUDCL

4

AUDF1 = y

y=y+1

drawscreen

if y < 64 then goto castlecompleted

rem Aumenta la difficolta per il livello successivo.

y =0
d=d-1
score = score + 2

if d <= 30 then a = 4

if d <= 20 then a =2 : h

40

if d <= 10 then a =1 : h

60

if d = 0 then d

1
=

AUDV1 = 0 : AUDCL = 0 : AUDFl = 0

goto preloop

Pagina 147 di 236

Minotaur

rem KA A KA AR A AKX KK

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

set

set

* Minotaur

*

* DESCRIZIONE DEL GIOCO:

* I1 giocatore controlla un eroe (player0) in un labirinto a

* schermate multiple. Lo scopo € esplorare, raccogliere oggetti
* (lancia, scudo), sconfiggere un Minotauro (playerl) e

* raccogliere monete per aumentare il punteggio. Il mondo e

* composto da diverse stanze interconnesse.

* TECNICHE DI PROGRAMMAZIONE UTILIZZATE:

* - Esplorazione a Schermate Multiple: Il gioco gestisce il

* passaggio tra diverse stanze ('room). Quando il giocatore
* raggiunge un bordo dello schermo, la variabile ‘room viene
* aggiornata, viene chiamata la subroutine della nuova stanza
* e i1l giocatore viene riposizionato sul lato opposto.

* — Sistema di Inventario e Stati: Variabili come “haslance’,

* “hasshield’ e “hascoin’ fungono da flag per tenere traccia
* degli oggetti raccolti e degli stati del giocatore (es. puo
& attaccare, é& protetto, ha raccolto la moneta).

* - Logica di Combattimento: Il giocatore pud attaccare con una
B lancia (missile0O), la cui forma e direzione cambiano in

* base all'orientamento del giocatore. Il Minotauro ha una

* sorta di "punti vita" (‘minotauro’) e cambia aspetto quando
* viene colpito.

* - IA di Pattugliamento: Il Minotauro non insegue direttamente
* il giocatore, ma si muove lungo un percorso predefinito,

€ pattugliando 1l'area.

* - Gestione di Oggetti Multipli con Sprite: Il gioco usa gli

* oggetti TIA in modo creativo. ‘player0O" e l'eroe, 'playerl’
B il Minotauro O la moneta, "missile0’ & la lancia e ‘ball’ e
€ lo scudo. Il codice gestisce quale oggetto visualizzare in

€ base allo stato del gioco.

*

*

é*

*

* - Logica di Collisione Avanzata: Il movimento del giocatore *
* viene bloccato dalle pareti del “playfield’ ripristinando la *
€ sua posizione precedente in caso di collisione. €
Rk kb b bk b b b b kb b b b b b b b kb b b b b b b b b b b b b kb b ek kb kb b b h b b b b b kb b b b b kb e

romsize 4k

smartbranching on

Pagina 148 di 236

rem —--- Sezione Definizioni Variabili (Alias) --—-

rem Flag per bloccare il movimento dopo una collisione con i muri.
dim nodown = a

dim noup = b

dim noleft = c

dim noright = d

rem Numero della stanza corrente.

dim room = e

rem Stato della lancia (O=non posseduta, 1l=in mano, 2=lanciata, 3=a terra).
dim haslance = £

rem Flag per il possesso dello scudo (0=no, 1l=si).

dim hasshield = g

rem Flag per indicare se la moneta nella stanza € stata raccolta.
dim hascoin = h

rem Variabile temporanea per i numeri casuali.

dim randnumber = i

rem Valore della moneta corrente (1, 5, o 32).

dim coinvalue = j

rem Direzione del giocatore (l=su, 2=destra, 3=giu, 4=sinistra).
dim compass = k

rem "Punti vita" del Minotauro (2=sano, l=ferito, O=morto).

dim minotauro = m

rem Contatore per l'invulnerabilita temporanea del giocatore dopo essere stato colpito.

dim hitted = n

init
rem --- Inizializzazione Globale ---
score = 0

COLUBK = $F4

rem --- Inizializzazione Variabili di Stato ---
haslance = 0
hasshield = 0

hascoin = 0

coinvalue = 1

hitted = 0

room = 0

nodown = 0

noup = 0

noleft = 0

noright = 0

rem --- Impostazioni Iniziali Oggetti di Gioco ---

Pagina 149 di 236

player0Ox = 24
playerOy = 76
missileOheight = 8
missileOx = 83

48

missileOy
ballheight = 4

rem CTRLPF=$21 imposta la palla (scudo) dietro al playfield.
CTRLPF = $21

ballx = 0

bally = 0

rem per inizializzare le collisioni

drawscreen

rem --- Ciclo di Gioco Principale ---
mainloop
rem Carica la stanza 1 se il gioco € appena iniziato (room=0).

if room = 0 then gosub rooml : gosub moverderecha : gosub minoheridados : COLUPO = $86

rem Imposta la dimensione dello sprite del nemico.

NUSIZ1 = $10

rem Imposta il colore del nemico/moneta. Cambia colore in base al valore della moneta.
COLUPL = $4A

if coinvalue = 5 then COLUP1l = $0A

if coinvalue = 32 then COLUPl = $1E

rem Gestisce 1l'invulnerabilita del giocatore: se & stato colpito, lampeggia.

if hitted > 0 then hitted = hitted - 1 : COLUPO = $40 else COLUPO = $86

rem --- Logica di Raccolta Oggetti ---

rem Raccoglie la lancia (missileO).

if collision(missileO,player0) && haslance = 0 then haslance = 1 : NUSIZO
=8

$00 : missileOheight

rem Raccoglie la lancia dopo averla lanciata.

if collision(missile0,player0) && haslance = 3 then haslance = 1 : NUSIZO $00 : missileOheight

=8
rem Raccoglie lo scudo (ball).

if collision(ball,player0) && hasshield = 0 then hasshield =1

rem --- Logica delle Collisioni Principali ---

rem Collisione con Minotauro: se ha lo scudo, lo perde. Se non ce l'ha, muore (non implementato)
if minotauro > 0 && hitted = 0 && collision(playerl,player0) && hasshield = 1 then hasshield = 0

ballx = 0 : bally = 0 : gosub hit

if minotauro > 0 && hitted = 0 && collision(playerl,player0) && hasshield = 0 then goto gameover

Pagina 150 di 236

rem Collisione con moneta (quando il minotauro €& morto).

if minotauro = 0 && collision(playerl,player0) && hascoin = 0 then hascoin = 1 : score = score +
coinvalue : gosub colocarmoneda

rem --- Gestione Input Giocatore (Movimento e Attacco) ---

if joyOleft && !joyOright && !JjoyOup && !joyOdown && noleft = 0 then gosub moverizquierda
if !joyOleft && joyOright && !JjoyOup && !joyOdown && noright = 0 then gosub moverderecha
if !joyOleft && !joyOright && joyOup && !joyOdown && noup = 0 then gosub moverarriba

if !joyOleft && !joyOright && !joyOup && joyOdown && nodown = 0 then gosub moverabajo

if joyOfire && haslance = 1 then haslance = 2

rem --- Logica della Lancia ---

rem Muove la lancia se e stata lanciata.

if haslance = 2 && !collision(playfield,missile0) then gosub moverlanza
rem Ferma la lancia se colpisce un muro.

if haslance = 2 && collision(playfield,missile0) && compass = 2 then haslance = 3 : missileOx =
missileOx - O

if haslance = 2 && collision(playfield,missile0) then haslance = 3
rem Ferisce il Minotauro se lo colpisce.

if haslance = 2 && collision(playerl,missile0) then haslance = 3 : minotauro = minotauro - 1

rem --- Logica del Nemico ---
rem Aggiorna la posizione e l'aspetto del Minotauro.
if minotauro > 0 then gosub moverenemigo else gosub minomuerto

if minotauro = 1 then gosub minoheridauno

rem --- Logica Grafica della Lancia ---

rem Cambia la forma della lancia (orizzontale/verticale) in base alla direzione.

if compass = 1 && haslance = 3 then NUSIZO $00 : missileOheight = 8

if compass = 2 && haslance = 3 then NUSIZO

$30 : missileOheight

0
if compass = 3 && haslance = 3 then NUSIZO $00 : missileOheight 8
0

if compass = 4 && haslance = 3 then NUSIZO

$30 : missileOheight =

rem --- Gestione Posizione Oggetti Nelle Stanze —---

rem Posiziona/nasconde la lancia e lo scudo a seconda della stanza in cui si trova il giocatore.
if room = 1 && haslance = 0 then missileOx = 83 : missileOy = 48

if room <> 1 && haslance = 0 then missileOx = 0 : missileOy = 0

if room = 2 && hasshield = 0 then ballx = 83 : bally = 45

if room <> 2 && hasshield = 0 then ballx = 0 : bally = 0

rem --- Logica di Transizione tra le Stanze ---
rem Controlla se il giocatore ha raggiunto un bordo per cambiare stanza.
if room = 1 && playerOx > 145 then gosub room2 : playerOx = 22

if room = 2 && playerOx < 5 then gosub rooml : playerOx = 140

Pagina 151 di 236

if room = 1 && playerOy < 10 then gosub room3 : playerOy = 80

if room = 3 && playerOy > 85 then gosub rooml : playerOy = 10
if room = 3 && playerOx > 145 then gosub room4 : playerOx = 22
if room = 4 && playerOx < 5 then gosub room3 : playerOx = 140
if room = 2 && playerOy < 5 then gosub room4 : playerOy = 80

if room = 4 && playerOy > 85 then gosub room2 : playerOy = 10
if room = 3 && playerOy < 10 then gosub room5 : playerOy = 80
if room = 5 && playerOy > 85 then gosub room3 : playerOy = 10
if room = 4 && playerOx > 145 then gosub roomé6 : playerOx = 22
if room = 6 && playerOx < 5 then gosub room4 : playerOx = 140

if room = 6 && playerOx > 145 then gosub room7 : player0Ox = 22
if room = 7 && playerOx < 5 then gosub room6 : playerOx = 140
if room = 7 && playerOx > 145 then gosub room9 : playerOx = 22
if room = 9 && playerOx < 5 then gosub room7 : playerOx = 140

if room = 8 && playerOy < 5 then gosub room7 : playerOy = 80

if room = 7 && playerOy > 85 then gosub room8 : playerOy = 10

rem Disegna il fotogramma e ripete il ciclo.
drawscreen

goto mainloop

gameover
if joyOfire then goto gameover
gameover?2
COLUBK = $08
drawscreen
if joyOfire then goto init

goto gameover?2

rem --- Subroutine di Movimento e Collisione con i Muri ---

moverizquierda
player0:
$01101100
$00100100
$00100100
$00011000
$11111111
%$10011001
$00100100
$00111100
$00110110

end

rem Imposta la direzione e controlla la collisione con il playfield.

Pagina 152 di 236

if haslance = 1 then compass = 4

if collision(playfield,player0) then gosub x001 else gosub x002

rem Aggiorna la posizione di lancia e scudo per "attaccarli" al giocatore.
if haslance = 1 then missileOx = player0Ox : missileOy = playerQy - 2
if hasshield = 1 then ballx = playerOx + 7 : bally = playerOy - 3
return

x001

rem Se c'e collisione, spinge indietro il giocatore.

playerOx = playerOx + 1 : noright = 0 : noleft =1 : noup = 0

nodown = 0

return
x002

rem Se non c'é collisione, esegue il movimento.

playerOx = playerOx - 1 : noright = 0 : noleft = 0

noup = 0 : nodown = 0

return
%003

playerOx = playerOx - 1 : noright = 1 : noleft = 0

noup = 0 : nodown = 0
return
%004
playerOx = playerOx + 1: noright = 0 : noleft = 0 : noup = 0 : nodown = 0
return
x005
playerOy = playerOy + 1 : noright = 0 : noleft = 0 : noup = 1 : nodown = 0
return
%006
playerOy = playerOy - 1: noright = 0 : noleft = 0 : noup = 0 : nodown = 0
return
%007
playerOy = playerOy - 1 : noright = 0 : noleft = 0 : noup = 0 : nodown = 1
return
x008
playerOy = playerOy + 1: noright = 0 : noleft = 0 : noup = 0 : nodown = 0
return
moverderecha
player0:
%00110110
%00100100
%00100100
%$00011000
$11111111

%$10011001

Pagina 153 di 236

%00100100
%$00111100
$01101100
end
if haslance = 1 then compass = 2
if collision(playfield,player0) then gosub x003 else gosub x004
if haslance = 1 then missileOx = playerOx + 9 : missileOy = playerOy - 2
if hasshield = 1 then ballx = playerOx - 1 : bally = playerOy - 3
return
moverarriba
player0:
$01100110
%$00100100
%$00100100
$00011000
$11111111
%$10011001
%$00100100
$00111100
$00100100
end
if haslance = 1 then compass = 1
if collision(playfield,player0) then gosub x005 else gosub x006
if haslance = 1 then missileOx = playerOx : missileOy = playerOy - 2
if hasshield = 1 then ballx = playerOx + 7 : bally = playerOy - 3
return
moverabajo
player0:
%01100110
$00100100
$00100100
%$10011001
$11111111
$00011000
$00100100
%00111100
%00100100
end
if haslance = 1 then compass = 3
if collision(playfield,player0) then gosub x007 else gosub x008
if haslance = 1 then missileOx = playerOx : missileOy = playerOy - 2
if hasshield = 1 then ballx = playerOx + 7 : bally = playerOy - 3

return

Pagina 154 di 236

rem --- Subroutine di Gioco ---
hit
rem Attiva l'invulnerabilita temporanea del giocatore.
if hitted = 0 then hitted = 100
return
colocarmoneda
rem Posiziona una moneta in un punto casuale della stanza.
gosub minoheridados
if hascoin = 1 then playerlx = 0 : playerly = 0
randnumber = rand

if hascoin = 0 && randnumber <= 153 then coinvalue = 1

if hascoin = 0 && randnumber > 153 && randnumber <= 204 then coinvalue = 5
if hascoin = 0 && randnumber > 204 && randnumber <= 255 then coinvalue = 32
randnumber = rand

if hascoin = 0 && randnumber <= 64 then playerlx = 28 : playerly = 22

if hascoin = 0 && randnumber > 65 && randnumber <= 128 then playerlx = 118 : playerly = 22

o

if hascoin =

&& randnumber > 129 && randnumber <= 192 then playerlx = 28 : playerly = 77

if hascoin = 0 && randnumber > 193 && randnumber <= 255 then playerlx = 118 : playerly = 77
return
moverlanza
rem Muove la lancia in base alla direzione del giocatore.
if compass = 1 then NUSIZO = $00 : missileOheight = 8 : missileOy = missileQOy - 2

if compass = 2 then NUSIZO = $30 : missileOheight = 0 : missileOx = missileOx + 2

if compass = 3 then NUSIZO = $00 : missileOheight = 8 missileOy = missileOy + 2
if compass = 4 then NUSIZ0 = $30 : missileOheight = 0 missileOx = missileOx - 2
return

moverenemigo

rem IA di pattugliamento: il Minotauro si muove lungo un percorso rettangolare.
if minotauro > 0 && playerly = 22 && playerlx < 118 then playerlx = playerlx + 1
if minotauro > 0 && playerly = 77 && playerlx > 28 then playerlx = playerlx - 1

if minotauro > 0 && playerlx = 118 && playerly < 77 then playerly = playerly + 1

if minotauro > 0 && playerlx = 28 && playerly > 22 then playerly = playerly - 1

return
rem --- Subroutine Grafiche Nemico ---
minoheridados

rem Sprite del Minotauro sano.
playerl:

$01101100

$01101100

%00100100

Pagina 155 di 236

%00100100
%$00011000
$00011000
%$11011011
%$11111111
%00011000
$00100100
%01111110
%01000010
end
minotauro = 2
return
minoheridauno
rem Sprite del Minotauro ferito.
playerl:
$01101100
%$01101100
%$00100100
$00100100
%$00011000
%00011000
%$11011011
$11111111
%$00011000
$00100100
%00111100
end
return
minomuerto
rem Sprite del Minotauro sconfitto (ora appare la moneta al suo posto).
playerl:
%00010000
%00001000
%$11101011
%00011101
%$00011101
%$11101011
$00001000
%00010000
end

return

rem --- Subroutine di Definizione delle Stanze ---

Pagina 156 di 236

rem Ognuna di queste subroutine definisce la grafica di una stanza
rem e la logica per la generazione delle monete al suo interno.
rooml

room = 1

hascoin = 0

COLUPF = $CO

playfield:

KXXXXXXXXXXKXX e ev o nn KXXXXXXXXXXX
X0 000000000000000000000000060000 X
286 000000000000000000000000006000 X
Xoo00000000000 D:0:0:0:0:0:0 G X
Xoo0000000000000000 Xoo00000000000
%$60000000000000000 0 Xoooooo0000000
%$60000000000000000 0 Xoooooo0000000
Xo00000000000 D:0:0:0:0:0:0 QA X
26 60000000000000000000000000000 X
26 000000000000006000000000000000 X

):0,0.0,0.9.0:9:9:9:9:0:0:0:0:9.9.0.0.0,0,0,0.0.0.9:0:0:0:0:0.0:¢
end

if haslance = 1 then gosub colocarmoneda else hascoin = 1 : gosub colocarmoneda
if haslance = 3 then haslance = 0 : NUSIZ0 = $00 : missileOheight = 8

return

room2

room = 2

hascoin = 0

playfield:

XXXXXXXXXXXXX oo ov v v XXX XXX XXKXXX
$000000000000000000000000000000 X
280 000000000000000000000000000O0G X
8000000000000 XXXXXXX v v v ivv e e X
............. 280 000000000000000 0
............. 286 000000000000000 05
............. 286 000000000000000 05
8000000000000 D:9:9.0.0:0:0. CUIN X
280 00000000000000000000000000000 X
280 000000000000000000000000000O00 X

):9:9:9.9:0.9.9.9:9.9.9.0.:9:9.90.9.9.9.9.9.9.0.0.0.9.9.0.9.0.0.0:¢
end

if hasshield = 1 then gosub colocarmoneda else hascoin = 1 : gosub colocarmoneda
if haslance = 3 then haslance = 0

return

room3

room = 3

Pagina 157 di 236

hascoin = 0

playfield:

Xoooooo KXXXXXXXX e ev oo v KXXXXXXKXX
2X6000000000000000000060000000000 X
X0 000000000000000000000000060000 X
Xooooooooo0000 XXXXXXX v vviiiee e X
2X6000000000000000000000000000C00O0
2X600000000000000000000000000000O0
X0 00000000000000000000000000000O
Xoooooo0000000 XXXXXXX e veveiee e X
26 60000000000000000000000000000 X
26 60000000000000000000000000000 X
XXXXXXXXXXXXX oo v v v v XXX XXKXXXXKXXX
end

gosub colocarmoneda

if haslance = 3 then haslance = 0
return

room4

room = 4

hascoin = 0

playfield:

):0,0.0.0.0.0:0:9:0:0:0:0:0:0:9.9.0.0.0,0.0.0.0.0.9:0:0:0:0:0:0:¢

$000000000000000000000000000000 X
$000000000000000000000000000000 X
¥ ooo000000000 *ooooooo oooooo00000 X
............ 2$o0000002oocooooo000
............ 2$o0000002oocooooo000
............ %0 000000%00000000000
®8o0 0000000000 ®oooo0000 ®o 000000000 X
280 00000000000000000000000000000 X
280 00000000000000000000000000000 X
D:0:9:9.90:0:9:9.9.0.0.0.0 CUNIIN KXXXXXKXXXXXX
end

gosub colocarmoneda

if haslance = 3 then haslance = 0
return

room5

room = 5

hascoin = 0

playfield:

D;9,0:0:0:9:9:0.9.0:0:9:9,9.0.0.0:0:9.9:9.9.0.0:0:0.9,0.0.0.0:0.¢

Pagina 158 di 236

?%0 00000):9:0:0:0.9:0.:9:0.9:0:0:0:0:0:0:0:0:0:0:0.0:0.0.0'¢
Xoooooo ¥00000000000000000000000 X
Xoooooo ¥00000000000000000000000 X
?%0 00000 2460 0000000000000000000000 X
?%0 00000 2460 0000000000000000000000 X
Xoooooo ¥00000000000000000000000 X
Xoooooo KXXXXXXXX o oo oo n KXXXXXXKXX
end

gosub colocarmoneda

if haslance = 3 then haslance =
return
roomb6

room = 6

hascoin =1

playfield:
0,0,0:0.0.0:9:9.0.9.9.9.0,0:9.0.0.9.9.0,0.9.0.0.0:0.0.0.9.0.0.0.4
),0:0:9.9.0:9:9.9.0.9:9.0,0.9.0.0:0.9.0.0.0.0.0, CUNIRIIN
):9:9.9.0.9:9.9.9.9.9.9.0:9.:9.9.0.9.9.0.0.0.0.0 G,
):9:9:9.9.9:9.9.9.9.9.9.0:9:9.9.0.9.9.9.0.0.0.0. CUNN
......... XXX XXXXXXXXXXXX o oo v o0 X
......... XXX XXXXXXXXXXXX oo v o0 X
......... AAXXXXXXXXXXXXX oo oo X
286 00000000000000000000000000000 X
286 00000000000000000000000000000 X
286 00000000000000000000000000000 X

0,0,0:0.0.0.9:9.0.9.9.9.9,0:9.0.0.9.9.0,0.0.0.0.9:0.0.0.9.0.0.0.4
end

gosub colocarmoneda

if haslance = 3 then haslance =
return

room?7

room = 7

hascoin = 1

playfield:

D19:0:0:0:9:0:0:0:9.9.9.9.9.9.9.9.9:0:0.0:0:0:0:0:0.9.0.9.9.9.9:¢

.................... AAXXXKXXXXXXX
.................... AAXXXXXXXXXX
.................... AAXXXXXXXXXX
D:0.0:0:0:9.9:9:9.0:0:0.0 G X
D:0.0:9:0:9.9:9:9.0:0:0 .0 G X
D;0,0:0:0:0:9:9.0.0:0:0 .0 G X
D19:0:0:0:0:0:0:0:0.0.0.0. CUNINN AAXXXXXXXXXX

0

0

Pagina 159 di 236

XXXXXXXXXXKXX oo vvnns Xooooooooooo

):9:9:0.9.9:0:0:9.9.0:0.0. CUNIIIN 800000000000
):9:0:9:9:9.:9.9:9.0.0.0.0. CUNIIIN 20000000000 X
end

gosub colocarmoneda

if haslance = 3 then haslance = 0
return

room8

room = 8

hascoin = 0

playfield:

KXXXXXXXXXXKXX o oo ns XXooooooooo X
2$6000000000000000000 XXooooo0c00o0 X
2$6000000000000000000 XXooooo0000o0 X
%0000000000000000000 ¥Xooooooooo X
%0000000000000000000 ¥Xooooooooo X
2$6000000000000000000 XXooooo0c00o0 X
Xooooooo),0,0:0.0.0:9:9.0.0.9.0.0,0. CUNEIIIIIIN X
%000000000000000000000000006000 G0 X
$00000000000000000000000000000 0 X
286 0000000000000000000000000060030 X

0,0,0:0.0.0.9:9.0.9.9.9.9,0:9.0.0.9.9.0,0.0.0.0.9:0.0.0.9.0.0.0.4
end

gosub colocarmoneda

if haslance = 3 then haslance = 0
return

room9

room = 9

hascoin = 0

playfield:

D19:0:0:0:9:0:9:9:9:9.9.9.9.9.9.9.9,0:0:0:0:0:0:0:0:0:0.0.0.0.0.¢

X600000000000000000000000000000 X
X600000000000000000000000000000 X
Xoooooooo00000 IR, 5 0000000000 X
Xoooooooo00000 Xoooooo00000000000 X
Xoocooocooooooo Xooocoooooooooc00000 X
Xoocooocoocooooo Xooocoooooooooc00000 X
Xoooooooo00000 IR, 5 0000000000 X
............................... X
............................... X

):9:9:9.9:0.9.9.9:9.:9.9.0.9:9.9.0.9.9.9.:0.9.9.0.0.9.9.0.9.9.0.0:¢
end

gosub colocarmoneda

Pagina 160 di 236

if haslance = 3 then haslance = 0

return

Pagina 161 di 236

Snappy

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

rem

rem

set

rem
rem

dim

KK AR XA KA KKK

* Snappy *
* *
* DESCRIZIONE DEL GIOCO: v
* I1 giocatore controlla un esploratore (player0O) che deve *
* attraversare una voragine usando una liana (playfield). Il b
* tempismo e cruciale: se l'esploratore salta al momento *
* sbagliato, cadra nella voragine dove un coccodrillo *
* (Snappy, playerl) lo attende. *
* *
* TECNICHE DI PROGRAMMAZIONE UTILIZZATE: &
* - Macchina a Stati (State Machine): Il cuore del programma. *
& La variabile “gamestate’ controlla lo stato attuale del W
£ giocatore (in caduta, in attesa, in corsa, sulla liana, £
* etc.). Il 'main loop’ delega la logica a una subroutine *
* "centralino" ("handlestate’) che esegue solo il codice *
* relativo allo stato corrente, mantenendo il programma *
2 organizzato ed efficiente. *
* — Animazione basata su Timer: L'animazione della liana, del *
* giocatore e del coccodrillo e gestita da contatori *
B3 ("frame', ‘playerframe’, ‘snappyframe’) che vengono B3
2 incrementati a ogni ciclo. Questo permette di alternare 2
2 le definizioni grafiche per creare 1'illusione del 2
o movimento. o
* - Gestione Audio con Subroutine: Gli effetti sonori sono o
2 incapsulati in piccole subroutine ("playvinesound-, 2
B ‘playdeathsound’, etc.) e attivati in punti specifici del £
* codice per sincronizzarli con l'azione. *
* - Generazione del Seme Casuale (Seed): Nella schermata del i
B titolo, un contatore (randseed’) viene incrementato. B
* Questo valore viene poi usato per inizializzare il *
€ generatore di numeri casuali “rand’, garantendo che la €
€ posizione iniziale del giocatore cambi a ogni partita. €

RR Rk kb b b bk b b b b kb b S R I b bk kR S

—--- Direttive del Compilatore ---

romsize 4k
—-—— Sezione Definizioni Variabili (Alias) ---

Contatore per l'animazione della liana (0-119). Determina la posizione della liana.

frame = d

Pagina 162 di 236

rem Contatore per l'animazione del giocatore. Decide quale frame di animazione dell'eroe mostra
re.

dim playerframe = e

rem Gestore dello stato di gioco. La variabile "cervello" che controlla la logica corrente.
dim gamestate = f

rem Contatore per l'animazione del coccodrillo 'Snappy'.

dim snappyframe = g

rem Variabile per l'effetto cambio colore nella schermata del titolo.
dim introcolour = h

rem Contatore per l'animazione di Snappy che mangia il giocatore.

dim snappyeatingframe = i

rem Contatore delle vite del giocatore.

dim life = j

rem Contatore usato per generare un seme casuale per il comando 'rand'.

dim randseed = k

rem --- Inizializzazione delle Variabili di Gioco (eseguita una sola volta) ---
rem Imposta la posizione iniziale della liana.

frame = 30

rem Azzera 11 contatore per il seme casuale.

randseed = 0

rem Inizia con il primo frame di animazione del giocatore.

playerframe = 0

rem --- Definizione degli Stati della Macchina a Stati (gamestate) ---
rem 1 = Il giocatore sta cadendo con il paracadute.

rem 2 = Il giocatore e a terra e in attesa dell'input.

rem 3 = Il giocatore sta correndo verso la voragine.

rem 4 = Il giocatore e aggrappato alla liana.

rem 5 = Il giocatore corre verso il traguardo dopo la liana.
6

rem = Il giocatore e al sicuro (stato iniziale o dopo aver completato un round) .
rem 7 = Il giocatore sta cadendo nella voragine (morte).
rem 8 = Il coccodrillo 'Snappy' sta mangiando il giocatore.

rem Inizia il gioco nello stato 'sicuro'.

gamestate = 6

rem --- Impostazioni Iniziali HUD ---

rem Imposta il colore per il punteggio.

scorecolor = 22

rem Imposta il colore iniziale per l'effetto del titolo.

introcolour = 0

rem Salta direttamente al ciclo di gioco principale.

Pagina 163 di 236

goto main

rem ====== Sottoprogramma: Schermata Titolo e Attesa =========

rem
showintro

rem Definisce la grafica statica del titolo (testo "SNAPPY").
playfield:

...... X.X.X. X, . X, . X.X.X.X.X..X..
X XWX XXX XUXUXUXUXKL WXL

ce XXX XL XL XXLUXLXX L L XKLL XXX

.................. XMoo oXooooooX
.................. X X....XX
end
rem --- Logica della Schermata Titolo ---

rem Incrementa la variabile per creare un effetto di cambio colore arcobaleno.
introcolour = introcolour + 1
COLUPF = introcolour

rem Imposta i registri TIA: sfondo e sprite neri per nasconderli.

COLUBK = 0
COLUPO = O
COLUPL = 0

rem Nasconde fisicamente gli sprite posizionandoli fuori dallo schermo.

playerOx = 0

playerQOy =

0
playerlx = 0
playerly 0
rem Incrementa il seme per il generatore di numeri casuali mentre il giocatore attende.
randseed = randseed + 1
rem Silenzia entrambi i canali audio.
gosub stopvoiceone
gosub stopvoicezero
rem Disegna lo schermo e attende 1'input del giocatore.
drawscreen
rem Se il giocatore preme fuoco, inizia il gioco.

if joyOfire then goto initialize

Pagina 164 di 236

rem Altrimenti, continua a mostrare la schermata del titolo.

goto showintro

rem ====== Sottoprogramma: Inizializzazione Partita ======

rem
initialize
rem Azzera il punteggio e imposta le vite.
score = 0
life = 10

rem Inizializza il generatore di numeri casuali con il seme raccolto durante la schermata del ti
tolo.

if randseed = 0 then rand = 1 else rand = randseed
rem Torna al ciclo di gioco principale per iniziare la partita.

goto main

rem
rem ====== Sottoprogramma: Animazione di Snappy =======
rem

animatesnappy

rem Alterna due sprite per il coccodrillo in base al contatore 'snappyframe' per creare un'anima
zione a 2 frame.

if snappyframe = 0 then playerl:
$00111100
$00111100
%00111100
%00111100
$01100111
$01100110
$01100110
$11000011
%$11000011
%$11000011
$10000001
end
if snappyframe = 10 then playerl:
%00111100
$00111100
$00111100
%00111100
%00111110
$00111100
$00111100
%00111100

Pagina 165 di 236

$00011100

$00011100

$00011000
end

return

rem ====== Sottoprogramma: Animazione della Liana ======

rem

swingvine

rem Questa lunga catena di 'if' disegna una diversa grafica del playfield in base al valore del

contatore 'frame', simulando l'oscillazione della liana.

if frame = 0 then playfield:

.................. XXXXXXXXX oo vt
...................... Xooocoooooo
..................... Xooocooooooo
.................... Xooooooooooo
................... Xoooooooooooo
.................. Xooocoooooooooo
):0.0.0.0.9.0:9:0:0:0:0:0:0:0:0.0.0, CUI XXXXX
):0.0.0.0.0.0:9:0:0:0:0:0:0:0:0.0.0, CUIII XXXXX
D:9:0:0:9:0:0:0:0:0.9.9.9.9.9.9.0.0, CUNEIN XXXXX

):9:9:9:9:9:9.9:9.0:9.9:9.9.9:9.9.0.9.0.9.9.9.9.9.0.9.0.0.0.9.0.4
end

if frame = 10 || frame = 110 then playfield:

D:9:0:0:9:0:0:9:9:9.:9.9.9.0.9.0.0.0, U XXXXX
D:9:0:0:0:0:0:0:0:0.9.9.9.9.9.9.0.0, NN XXXXX

D19:0:0:0:0:0:0:0:9.9.9.9.9.9.9.9.9:0:0.0:0:0:0:0:0.9.0.0.9.9.9:¢

end
if frame = 20 || frame = 100 then playfield:
..................):9:0:0:0:0:0:0:0 CUIEN
...................... Xooo0000000
...................... Xoooooo0o00o0
..................... X o000000000

Pagina 166 di 236

..................... Xooooocooooo
);0:0:0:0:9:9.:0:9:9.0:9:9.0:9:9.0:0: CENINNENIIIN XXXXX
):0:0:9:0:9.0.9:9:9.9:9.9.0.0:0:0.0, RN XXXXX
):0:0:9:0:9.0.0:9:9.9:9.9.0.0:0:0.0, GUNIN XXXXX

D19:0:0:9:9:0:9:9:9.:9.9.9.9.9.9.9.9:0:0.9:0:0:0:0:0.9:0.0.9.0.0:¢

end
if frame = 30 || frame = 90 then playfield:
.................. XXXXXXXXX oo oo
...................... Xooo000000
...................... Xooo000000
...................... Xoooooo0000
...................... Xooooo0000
...................... Xooo0000000
),0:0:0.9.0:9:9.0.0.9:9.0.0.:9.0.0.0. CUNIIIIIN XXXXX
),0:0:0.9.0:9:9.0.9.9:9.0.0.9.0.0.0. CUNIIIN XXXXX
):9:9.9.9.0:9.9.9.:9.9.9.0:0:9.0.0.0. G XXXXX

D19:0:0:0:9:0:0:0:9.9.9.9.9.9.9.9.9:0:0:0:0:0:0:0:0.9.0.0.9.9.9:¢

end
if frame = 40 || frame = 80 then playfield:
..................):0:0:0:0:0:0:0:0. CUNIIEN
...................... *ooooo00000
...................... *ooooo00000
....................... Xoooooo000
....................... Xoooooo000
....................... oooooo0o
D:9:9.9.:9:9:9.9.9:9.9.9.0:0.0:0.0.0. G XXXXX
D:9:9.9:9:9:9.9.0:9.9.9.0:9.0:0.0.0. G XXXXX
D:9:9:9.90:0:9.9.9:0.9.9.0:0:9.0.0.0. G XXXXX

D19:0:0:0:0:0:0:0:9.9.9.9.9.9.9.9.9:0:9.0:0:0:0:0:0.9.0.0.9.9.9:¢

end
if frame = 50 || frame = 70 then playfield:
..................):0:0:0:0:0:0:0:0. CUNIIEN
...................... ®oo0o0000000
....................... XXoo0000000
....................... Xoooooooo
........................ Kooooooo
......................... Koooooo
):9:9.9:9:9:9.9.9:9.9.9.0:0.0.0.0:0. G XXXXX

Pagina 167 di 236

):9.:9.9.9.9.0:0:0:0:0.:0:0:0.9.0.0.0. GUN XXXXX

):9.:9.9.9.9.0.9:0:0:0:0:0:0:9.0.9.0. GUN XXXXX

):9:9.9.9.9.9.9.9:9.9.9.9.:9.9.9.9.9.9.0:9.9.9.9.9.9.0.9.9.0.0:0.¢
end

if frame = 60 then playfield:

.................. XXXXXXXXX .o n o
...................... Xooooooooo
....................... Xoooooooo
........................ Xooooooo
......................... Xoooooo
.......................... Xooooo
):0,0.0.0.0.0:9:0:0:9:0:0:0:0.0.0.0, CUN XXXXX
):0,0.0.0.0.0:9:0:0:0:0:0:0:0.0.0.0, U XXXXX
):0:0:0:9:9:0:9:0:0.9.9.9.9.9.9.0.0, CUNEIN XXXXX

):9:9.9.9.9.9.9.9:9.9.9.9.9.9.9.9.9.9.9:9.9.9.0.9.9.0.9.9.0.0:0:¢
end
rem Sincronizza l'audio con l'animazione della liana.
if frame = 0 then gosub playvinesound
if frame = 60 then gosub playvinesecondsound

rem Spegne il suono dopo pochi frame per creare un effetto breve.

if frame = 3 then gosub stopvoicezero
if frame = 63 then gosub stopvoicezero
return
rem
rem ==== Sottoprogrammi Audio =========
rem

playvinesound

AUDV0=4:AUDCO=12:AUDF0=28

return

playvinesecondsound
AUDV0=4:AUDCO0=12:AUDF0=20

return

playdeathsound
AUDV1=4:AUDC1=14:AUDF1=20

return
playvictorysound

AUDV1=4:AUDC1=4:AUDF1=10

return

Pagina 168 di 236

stopvoicezero
AUDVO0=0

return

stopvoiceone
AUDV1=0

return

rem ====== Sottoprogrammi Grafici: Disegno del Giocatore ======

rem
drawplayer
rem Alterna due sprite per l'animazione di corsa del giocatore in base al timer 'playerframe'.
if playerframe = 0 then player0:
$00110110
%00100100
%00100100
$00011000
%01111110
%$00011000
%00111100
$00111100
end
if playerframe = 10 then playerO:
%00011100
%00011000
$00011000
%00011010
$00111100
%$01011000
%00111100
%00111100
end

return

drawplayerparachute
rem Sprite speciale per il giocatore quando si lancia col paracadute.
player0:

%00110110

%$00100100

$00100100

$00011000

Pagina 169 di 236

%$00111100
%01011010
%01111110
%01111110
%$00100100
%$00100100
%01000010
%10000001
$11111111
$11111111
%01111110
%00111100
end

return

drawplayerbeingeaten

rem Sprite del giocatore mentre viene mangiato.

playerO:
%00000000
%00000000
%00000000
%$00000000
%00011110
%00011000
%00111100
%00111100
end
return
rem
rem ====== CICLO DI GIOCO PRINCIPALE ======
rem
main

rem Controlla se il gioco e' finito (Game Over). Se si, torna alla schermata del titolo.

if life = 0 then goto showintro

rem Aggiorna la grafica della liana (playfield).

gosub swingvine

rem Aggiorna la grafica di Snappy (playerl).

gosub animatesnappy

Pagina 170 di 236

rem Seleziona lo sprite corretto per il giocatore (player0O) in base allo stato attuale del gioco

rem Se sta cadendo, disegna il paracadute.

if gamestate = 1 then gosub drawplayerparachute

rem Se viene mangiato, disegna l'animazione corrispondente.
if gamestate = 8 then gosub drawplayerbeingeaten

rem In tutti gli altri casi, disegna l'animazione di corsa.

if gamestate <> 1 && gamestate <> 8 then gosub drawplayer

rem Incrementa i1 contatori per le animazioni.
frame=frame+1
playerframe=playerframe+l

snappyframe=snappyframe+l

rem Accelera l'animazione di Snappy quando sta mangiando il giocatore.

if gamestate = 8 then snappyframe=snappyframe+l

rem Azzera 1 contatori quando raggiungono il loro limite per creare un loop.
if playerframe >= 20 then playerframe=0
if frame>=120 then frame=0

if snappyframe >= 20 then snappyframe=0

rem Esegue la logica dello stato di gioco corrente ("Centralino" della Macchina a Stati).

gosub handlestate

rem Imposta 1 registri TIA volatili ad ogni frame.
rem Colore di Snappy

COLUPL = 206

rem Colore del Giocatore

COLUPO = 28

rem Colore dello Sfondo (cielo/acqua)

COLUBK = 192

rem Colore del Playfield (liana/terreno)

COLUPF = 88

rem Comando che dice al TIA di disegnare l'intero frame.

drawscreen

rem Torna all'inizio del ciclo di gioco.

goto main

rem

rem = Sottoprogramma: Centralino della Macchina a Stati =

Pagina 171 di 236

rem = Esegue la subroutine corretta in base al valore di 'gamestate' =

rem
handlestate

if gamestate = 6 then gosub createplayer : return

if gamestate = 1 then gosub dropplayer : return

if gamestate = 2 then gosub playerwaiting : return

if gamestate = 3 then gosub playerrunning : return

if gamestate = 4 then gosub playeronvine : return

if gamestate = 7 then gosub playerdying : return

if gamestate = 5 then gosub playerruntosafety : return
if gamestate = 8 then gosub snappyeating : return

return

snappyeating

rem Gestisce l'animazione di Snappy che mangia il giocatore.

snappyeatingframe = snappyeatingframe + 1

playerframe=0

rem Dopo 60 frame, il round finisce e il giocatore perde una vita.

if snappyeatingframe = 60 then gosub stopvoiceone : gamestate = 6 : life=life-1

return

playerdying

rem Il giocatore cade verso il basso nella voragine.

playerOy = playerOy + 1

rem Quando raggiunge il fondo, passa allo stato 'snappyeating'.
if playerOy = 74 then gamestate = 8 : gosub playdeathsound

return

playerruntosafety

rem Il giocatore corre verso il bordo destro dello schermo per completare il livello.
playerOx = playerOx + 1

rem Se ha raggiunto la salvezza alla fine dello schermo, il round € vinto.

if playerOx = 139 then gamestate = 6 : score = score + 1 : gosub stopvoiceone : life=life-1

return

playeronvine
rem Aggiorna la posizione orizzontale del giocatore per seguire l'oscillazione della liana.
if frame = 20 then player0Ox = 98
if frame = 30 then player0Ox = 106
if frame = 40 then playerOx = 111
if frame = 50 then playerOx = 116
if frame = 60 then playerOx = 121

Pagina 172 di 236

rem Quando la liana raggiunge l'altro lato, il giocatore si stacca.

if frame = 60 then gamestate = 5 : gosub playvictorysound
return
playerrunning

rem Il giocatore corre verso la voragine.

playerOx = playerOx + 1

rem Controlla se il giocatore afferra la liana quando raggiunge il bordo della voragine.
if playerOx = 90 then gosub didplayercatchvine

return

didplayercatchvine

rem Controlla se la liana ('frame') e nella posizione giusta per essere afferrata. Se non lo e,
il giocatore cade.

if frame <= 10 || frame >= 115 then gamestate = 4 else gamestate = 7 : playerlx = 90

return

playerwaiting
rem Blocca l'animazione del giocatore in attesa dell'input.

playerframe = 0

rem Se il giocatore preme 'fuoco', inizia a correre.
if joyOfire then gamestate = 3

return

dropplayer

rem Il giocatore scende con il paracadute.

playerOy = playerOy + 1

rem Quando raggiunge il terreno, passa allo stato di attesa.

if playerOy = 56 then gamestate = 2

rem Blocca l'animazione durante la discesa per mostrare il giocatore fermo.
playerframe = 0

return

createplayer
rem Inizia un nuovo round. Genera il giocatore in una posizione casuale.

playerOx = 20 + (rand / 4)

playerOy = 10
rem Imposta lo stato iniziale su 'dropplayer' (caduta col paracadute).
gamestate = 1

playerframe = 0

Pagina 173 di 236

rem Resetta la posizione di Snappy in fondo alla voragine.

playerlx = 102

playerly = 80
snappyeatingframe = 0

return

Pagina 174 di 236

Gnamm

rem KK AR XA KA KKK

rem * Gnamm

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

rem

rem
set
set

set

rem

dim

*

DESCRIZIONE DEL GIOCO:

Una versione semplificata del classico vidogame. Il giocatore
(player0O) si muove in un labirinto statico, mangiando palline.
Un fantasma (playerl) insegue il giocatore attraverso il
labirinto. Il gioco include la musica di inizio, i suoni per
le palline e una sequenza di animazione per la morte del

gilocatore.

TECNICHE DI PROGRAMMAZIONE UTILIZZATE:

- IA di Inseguimento Semplice: Il fantasma non si muove a
caso, ma cerca attivamente di raggiungere il giocatore.

Ad ogni incrocio, decide se dare priorita al movimento
orizzontale o verticale per ridurre la distanza dal suo
bersaglio, pur rispettando i vincoli del labirinto.

- Uso Intensivo dei Bit-Flag: Quasi tutta la logica di stato
del gioco e gestita tramite singoli bit della variabile b,
controllando movimento, suoni, animazioni e logica.

- Movimento su Griglia: Il movimento del giocatore é& vincolato
a una griglia invisibile. I bit-flag "b{0} e "b{l}"
verificano se il giocatore & a un "incrocio" e pud cambiare
direzione.

- Animazione a Frame Multipli per Direzione: Il giocatore ha
set di animazioni diversi per ogni direzione di movimento

(su, giu, sinistra/destra), creando un effetto piu realistico.
- Interazione Dinamica con il Playfield: Le palline da
mangiare sono parte del “playfield'. Il comando “pfpixel’
viene usato per "cancellarle" dinamicamente.

- Kernel Option “pfcolors' : Questa opzione viene usata per

dare al labirinto un aspetto bicolore.

*

B

--— Direttive del Compilatore ---

romsize 4k

kernel options pfcolors

smartbranching on

--- Alias delle Variabili ---

player x = playerOx

Pagina 175 di 236

Imposta il flag b{7} per indicare che siamo nella sequenza di inizio.

(per rallentare)

(0O=destra, l=sinistra)

/ Animazione Iniziale —---

dim player y = playerOy

dim ghost x = playerlx

dim ghost y = playerly

dim player dir = c

dim ghost dir = r

dim ghost can h = t

dim ghost can v = u

dim tmpl = v

dim tmp2 = w

dim framecounter = z

rem bit-flags:

rem b{0} = giocatore a incrocio orizzontale
rem b{l} = giocatore a incrocio verticale
rem b{2} = toggle movimento giocatore

rem b{3} = direzione orizzontale giocatore
rem b{4} = sequenza di fine livello

rem b{5} = suono "waka-waka" attivo

rem b{6} = animazione di morte attiva

rem b{7} = sequenza di inizio partita attiva
rem

b{7}=1

rem --- Stato 0: Inizio Partita
beginning

g=0

rem Definisce la grafica del labirinto.

pla

yfield:

D19:0:0:0:0:0:0:0:9.9.9.9.9.9.9.9.9:0:0:0:0:0:0:0:0.9.0.9.9.9.9:¢

» XXX XXXXXXKXKXXX .

XXX XXX X.

19:9.9.9.9.9.9.:9.0.0:0.0.0.¢

« XXX XXXXXKXKXKXXX .

XXX X XXX

 XXXXXXXXKKXXXX .

« XXX XXXXXXKXKXXX . .

XX XXX UXUXL .

- XXX XXXXXKXKXKXKXX . .

« XXX XXXXXXKXKXXX . .

XXX X XXX

 XXXXXXXXXKKXXX . .

D19:0:9:9:9:0:9:9:9.:9.9.9.9.9.9.9.9:0:9:9:0:0:0:0:0:9:0.0.0.0.0.¢

end

Pagina 176 di 236

rem Definisce i colori per ogni linea del playfield.
pfcolors:
130

26

130

26

130

26

130

26

130

26

130

130

end

rem Imposta i1 colori, la posizione iniziale del giocatore e attiva il suono di inizio.
COLUPF=h : COLUPO=26 : scorecolor=14

player x=77 : player y=48 : h=130

if b{7} then AUDV0=8 : AUDV1=8 : AUDCO=4 : AUDCl=4

b{6}=0

drawscreen

rem Definizione grafica del giocatore
playerO:

%00111100

%01111110

%$11111111

%$11100000

$11111111

%01011110

%00111100
end

rem Definizione grafica del nemico (Fantasma)
playerl:

%01010100

%$11111110

%$11111110

%$11111110

%$11010110

$01111100

%00111000

Pagina 177 di 236

end

rem Posiziona il nemico e imposta il suo colore.
ghost x=77 : ghost y=80

COLUP1 = $32

noise
rem Gestisce la musica di inizio partita.
if b{7} then a=a+l
if !'b{7} then c=0 : goto main

if a>16 then a=0 : c=c+l

if c=1 then AUDF0=4 : AUDF1=18
if c=2 then AUDF0=12 : AUDF1=14
if ¢=3 then AUDF0=4 : AUDF1=18
if c=4 then AUDF0=8 : AUDF1=14

if ¢=5 then k=0 : ¢c=0 : goto anim

goto beginning

rem --- Ciclo di Gioco Principale ---
main
rem Disattiva il flag della sequenza di inizio.

b{7}=0

rem Esegui la logica del fantasma

gosub update ghost ai

rem Imposta i1l volume del suono (k € il contatore del suono "waka-waka").
AUDVO=k : AUDV1=0
rem Controlla la collisione con le palline del playfield.

if collision(player0,playfield) && g<50 then k=9 : b{5}=1 : score=score+l : g=g+l
off

if !collision(player0,playfield) && b{5} then b{5}=1

rem Gestisce il suono "waka-waka" quando si mangia.

if b{5} then k=k-1 : AUDCO=9 : AUDF0=9

if b{5} && k<1 then k=0 : b{5}=0

rem Controlla se tutte le palline sono state mangiate (g=70).

if collision(player0,playfield) && g=50 then g=0 : b{5}=0 : k=0 : b{4}=1 : c=0 : a=0
AUDVO0=0

if b{4} then j=j+1

rem Gestisce l'animazione e il suono della morte del giocatore.
if b{6} then AUDVO=k : AUDFO=m : AUDCO0=4 : n=n+1
if n=4 then k=k-1 : n=0 : o=o+l : p=p+l

if n=3 then m=m-1

Pagina 178 di 236

pfpixel e £

b{3}=0

if o>5 then k=0
if o>6 then o=0 : k=15
if b{6} && m=2 then o=0 : p=0 : k=0

if b{6} && m=2 then b{6}=0 : n=0 : c=0 : g{0}=1

rem --- Logica di Movimento su Griglia (Giocatore) ---
b{0}=0 : b{l}=0

if player x=17 then b{l}=1

if player x=77 then b{l}=1

if player x=137 then b{l}=1

if player y=16 then b{0}=1

if player y=32 then b{0}=1

if player y=48 then b{0}=1

if player y=64 then b{0}=1

if player y=80 then b{0}=1

rem Imposta i1 colori volatili.
COLUP0=26 : scorecolor=14

COLUP1 = $32

drawscreen

rem Se il flag g{0} e attivo, entra in pausa dopo la morte.
if g{0} then goto pause
rem Se il flag b{6} e attivo, continua l'animazione di morte.

if b{6} then goto anim death

rem Gestisce l'animazione di movimento del giocatore.

if !'b{4} then a=a+l

if a>20 then a=0

rem Gestisce la sequenza di fine livello.

if b{4} && j=20 then j=0 : i=i+l

if b{4} && i=5 then i=0 : b{4}=0 : AUDVO=0 : goto beginning

if b{4} then goto main

rem --- Gestione Collisione Giocatore-Fantasma ---

if collision(player0O,playerl) && !b{6} && !b{5} then k=15 : m=31 : b{6}=1 : c

rem --- Gestione Input Giocatore ---
if joyOleft && b{0} then player dir=1
if joyOright && b{0} then player dir=2
if joyOup && b{l} then player dir=3

if joyOdown && b{l} then player dir=4

Pagina 179 di 236

rem salta un frame se il giocatore ha mangiato una pallina
if k = 8 then goto chomp delay
rem Muove il giocatore nella direzione ‘¢’ memorizzata.

if b{2} then b{2}=0 else b{2}=1

if b{2} && player dir=1 && player x>17 then player x=player x-1 : b{3}=1

if b{2} && player dir=2 && player x<137 then player x=player x+1
if b{2} && player dir=3 && player y>16 then player y=player y-1
if b{2} && player dir=4 && player y<80 then player y=player y+1

chomp_delay
rem Specchia lo sprite (REFP0) in base alla direzione orizzontale.

if b{3} then REFP0=8 else REFP0=0

b{3}=0

rem Calcola la coordinata del playfield sotto il giocatore per cancellare le palline.

if b{3} then e=(player x-17)/4
if !'b{3} then e:(player_x—lO)/4

f=(player y-1)/8

goto anim

pause
rem Pausa dopo la morte, prima di ricominciare.
r=r+l : player x=77 : player y=48
if r>60 then r=0 : b{7}=1 : g{0}=0 : AUDFO0=4 : AUDF1=18 : a=0 : c=1

goto anim

update ghost ai
rem Non muovere il fantasma se il giocatore e morto
if b{6} || g{0} then return
rem Non muovere il fantasma durante lo schema di fine livello

if b{4} then return

rem --- Logica di Movimento su Griglia per il Fantasma —---
ghost can_h=0 : ghost can v=0

if ghost x=17 then ghost can v=1

if ghost x=77 then ghost can v=1

if ghost x=137 then ghost can v=1

if ghost y=16 then ghost can h=1

if ghost y=32 then ghost can h=1

if ghost y=48 then ghost can h=1

if ghost y=64 then ghost can h=1

Pagina 180 di 236

score

0

goto beginning

if ghost y=80 then ghost can h=1

rem --- Logica Decisionale del Fantasma ---

rem Se il fantasma € a un incrocio

(puo cambiare direzione)

if ghost can h || ghost can v then goto update ghost ai2

goto update ghost ai3

update ghost ai2

rem Logica di Inseguimento:

rem Priorita al movimento orizzontale se e la

if player x > ghost x then tmpl = player x - ghost x

if player x <= ghost x then tmpl =

ghost x - player x

if player y > ghost y then tmp2 = player y - ghost y

if player y <= ghost y then tmp2 =

if tmpl > tmp2 then goto

rem Altrimenti, priorita

if ghost y < player y
if ghost y > player y
if ghost x < player x
if ghost x > player x

goto update ghost ai3

update ghost ai2c
if ghost x < player x
if ghost x > player x
if ghost y < player y

if ghost y > player y

update ghost ai3

&&

&&

&&

&&

&&

&&

&&

&&

ghost_y - player y

update ghost ai2c

al movimento verticale

ghost_can_v
ghost can v
ghost can h

ghost_can_h

ghost can h
ghost_can_h
ghost_can_v

ghost can v

framecounter = framecounter + 1

rem Muovi il fantasma solo ogni due

if framecounter{0} then return

rem --- Muove il Fantasma nella
if ghost dir = 1 && ghost can v

if ghost dir = 2 && ghost can v

Il
w

if ghost dir

I
N

if ghost dir

return

&& ghost can_h

&& ghost can h

&&

&&

&&

&&

&&

&&

&&

&&

ghost dir <> 1
ghost dir <> 2
ghost dir <> 3

ghost dir <> 4

ghost dir <> 3
ghost dir <> 4
ghost dir <> 1

ghost_dir <> 2

frame

sua direzione corrente
then ghost y = ghost y
then ghost y = ghost y
then ghost x = ghost x

then ghost x = ghost x

scegli la direzione migliore

then
then
then

then

then
then
then

then

Pagina 181 di 236

distanza maggiore

ghost dir
ghost dir
ghost dir

ghost dir

ghost dir
ghost dir
ghost dir
ghost dir

N W

rem --- Centralino Animazioni ---
anim
rem Seleziona il set di animazioni corretto in base alla direzione di movimento.
if c<3 then goto anim lr
if c=3 then goto anim up

if c=4 then goto anim dn

anim 1r
rem Animazione per il movimento orizzontale (bocca che si apre e chiude).
if a<5 then goto frame 1
if a>4 && a<l1l0 then goto frame 2
if a>9 && a<l5 then goto frame 3
if a>14 then goto frame 2
anim up
rem Animazione per il movimento verso l'alto.
if a<5 then goto frame 1 up
if a>4 && a<l1l0 then goto frame 2 up
if a>9 && a<l5 then goto frame 3 up
if a>14 then goto frame 2 up
anim dn
rem Animazione per il movimento verso il basso.
if a<5 then goto frame 1 down
if a>4 && a<l1l0 then goto frame 2 down
if a>9 && a<l5 then goto frame 3 down

if a>14 then goto frame 2 down

anim death
rem Seleziona il frame per l'animazione di morte.
if p<4 then goto death frame 1
if p>3 && p<8 then goto death frame 2
if p>7 && p<l2 then goto death frame 3
if p>11 && p<lé then goto death frame 4
if p>15 && p<20 then goto death frame 5
if p>19 && p<24 then goto death frame 6

if p>23 then goto death frame 7

rem --- Subroutine Grafiche: Animazione di Morte ---
death frame 1

player0:

$0011100

%0111110

$1100011

Pagina 182 di 236

%$1100011
%$1100011
%0110110
%0010100
end
goto main
death frame 2
player0:
%0011100
%0011100
%0110110
%0110110
%$1110111
%$1110111
%$1100011
end
goto main
death frame 3
player0:
%0011100
%0110110
%$1110111
%$1100011
%0000000
%0000000
%0000000
end
goto main
death frame 4
playerO:
$1111111
%0111110
%0000000
%0000000
%0000000
%0000000
%0000000
end
goto main
death frame 5
player0:
%0000000
%0000000

Pagina 183 di 236

%0010100
%0001000
%0010100
%0000000
%0000000
end
goto main
death frame 6
playerO:
%$1000001
$0100010
$0010100
%0000000
%0010100
$0100010
$1000001
end
goto main
death frame 7
player0:
%0010100
%0000000
%0100010
%0000000
%0100010
%0000000
%0010100
end

goto main

rem --- Subroutine Grafiche: Animazione Movimento ---
frame 1 down
player0:
%0110110
%$1110111
$1110111
$1110111
$1111111
%0111010
%0011100
end
goto main

frame 2 down

Pagina 184 di 236

player0:
%$0100010
$1100011
%$1110111
%$1110111
%$1111111
$0111010
$0011100
end
goto main
frame 3 down
player0:
%0100010
%$1100011
$1100011
%$1110111
$1111111
%0111010
$0011100
end
goto main
frame 1 up
player0:
$0011100
$0111010
$1111111
%$1110111
%$1110111
%$1110111
%0110110
end
goto main
frame 2 up
playerO:
$0011100
%0111010
%1111111
%$1110111
%$1110111
%$1100011
%0100010
end

goto main

Pagina 185 di 236

frame 3 up

player0:
$0011100
$0111010
%$1111111
%$1110111
$1100011
$1100011
%0100010

end

goto main

frame 1

playerO:
%00111100
%01111110
$11111111
%$11100000
%11111111
%01011110
%00111100

end

goto main

frame 2

playerO:
%00111100
%01111110
%$11111100
%$11100000
%11111100
%01011110
%00111100

end

goto main

frame 3

playerO:
$00111100
%$01111100
%$11110000
%$11100000
%$11110000

Pagina 186 di 236

%$01011100
%$00111100
end

goto main

Pagina 187 di 236

Highway Racer

rem KK AR XA KA KKK

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

set

*

*

*

Highway Racer (Corse in Autostrada)

DESCRIZIONE DEL GIOCO:

Un gioco di corse con visuale dall'alto e scrolling verticale.
Il giocatore controlla un'auto (player0O) e deve evitare le
auto nemiche (playerl) e i posti di blocco (ball) che

appaiono sulla strada. Il giocatore pud sparare (missile0) per
distruggere le auto nemiche e ottenere punti. Anche le auto
nemiche possono sparare (missilel). La velocita aumenta
progressivamente. Il gioco termina quando i "danni" subiti,

rappresentati da un contatore, raggiungono una soglia.

TECNICHE DI PROGRAMMAZIONE UTILIZZATE:

- Aritmetica a Virgola Fissa (Fixed-Point Math): Il gioco
include “fixed point math.asm’ per utilizzare variabili 8.8.
"scroll’ (per lo scrolling della strada e nemici) e "mis’
(per 11 proiettile nemico) usano questa tecnica per ottenere
un movimento e un'accelerazione fluidi e graduali.

- Scrolling Verticale del Playfield: Il comando “pfscroll down'
viene usato per creare l'illusione del movimento continuo
della strada.

- IA con Comportamento Casuale: Le auto nemiche non si
limitano a scorrere, ma possono muoversi lateralmente e
"sbandare" in modo casuale grazie all'uso del comando “rand’
Anche 1 posti di blocco appaiono in posizioni casuali.

- Gestione Dinamica degli Sprite: Le auto nemiche cambiano
aspetto ('CarCreate’) e colore in base al livello di
difficolta. L'auto del giocatore cambia forma quando sterza.

- Sistema di "Punti Vita"/Danno: Invece di vite discrete, il
gioco usa un contatore di danni ("c’). Ogni collisione
incrementa il contatore. Al raggiungimento di una soglia,
si attiva la sequenza di Game Over.

- Oggetti Multipli e Power-up: Il gioco gestisce 4 oggetti
mobili contemporaneamente: l'auto del giocatore (player0),
l'auto nemica (playerl), il proiettile del giocatore
(missile0) e il proiettile nemico (missilel). C'e anche una

meccanica di power-up (invincibilita temporanea).

*

RR R Rk bk b bk b b b b b b I b b b b h b b E b b E h b b b b h b b b b b b b b b b b b b b b 3h b b b b b b b b b b b b b i

romsize 4k

Pagina 188 di 236

init
rem Include la libreria per la matematica a virgola fissa (8.8).

include fixed point math.asm

rem --- Sezione Definizioni Variabili (Alias) ---

rem 'scroll' (m.n) e la variabile 8.8 per la posizione Y dell'auto nemica.
dim scroll=m.n

m=0 n=0

scroll=1.0

rem 'mis' (k.j) & la variabile 8.8 per la posizione Y del missile nemico.

dim mis=k.j

3=0 k=0

mis=1.0

rem --- Mappa delle Variabili (Commenti originali mantenuti) ---
rem a: Posizione X dell'auto nemica per calcoli

rem b: Posizione X del posto di blocco (ball)

rem c: Contatore dei danni subiti dal giocatore

rem d: Flag per il movimento laterale dell'auto nemica
rem f: Contatore generico

rem h: Flag per power-up attivo

rem i: Flag per la schermata titolo

rem o: Contatore generico

rem p: Posizione Y del giocatore

rem g: Timer per il proiettile del giocatore

rem r: Timer per la pausa (es. game over)

rem t: Contatore di scrolling (aumenta la difficolta)
rem u: Posizione X dell'auto nemica

rem w: Flag per il colore (power-up)

rem x: Posizione X del giocatore

rem y: Contatore per il ciclo dei colori

rem z: Flag per nemico colpito

a=0 b=82 c=0 d=0 £=0 h=0 i=0 o=0

p=85 g=0 r=0 t=0 u=94 : W=0 x=75 y=16 z=0
rem --- Impostazioni Iniziali Oggetti e Colori ---

missileOx=0:missileQy=0
missilelx=0:missilely=0
COLUP0O=0

COLUP1=208

COLUPF=160

COLUBK=0

Pagina 189 di 236

CTRLPF=$35
scorecolor=246
AUDVO0=0

AUDV1=0

rem --- Stato 0: Schermata Titolo ---

intro

rem Fa scorrere lo sfondo per un effetto dinamico.
g=g+l

if g=2 then pfscroll down :g=0

rem Cicla i colori per un effetto "attract mode".
y=y+1

if y<17 then y=16

if y>29 then y=16

rem Disegna i bordi della strada per la schermata titolo.
pfpixel 7 1 on : pfpixel 25 1 on
pfpixel 7 2 on : pfpixel 25 2 on
pfpixel 7 3 on : pfpixel 25 3 on
pfpixel 7 4 on : pfpixel 25 4 on
pfpixel 7 5 on : pfpixel 25 5 on
pfpixel 7 6 on : pfpixel 25 6 on
pfpixel 7 7 on : pfpixel 25 7 on
pfpixel 7 8 on : pfpixel 25 8 on
pfpixel 7 9 on : pfpixel 25 9 on

drawscreen

rem Attende 1l'input del giocatore o il reset per iniziare il
if joyOdown then i=1 : score=0 : g=0:i=0:goto intro2

if switchreset then i=1 : score=0 : g=0:i=0:goto intro2

if joyOfire then i=1: score=0 : g=0:1=0:goto intro2

goto intro

rem --- Inizializzazione della Partita ---
intro2

rem Posiziona le auto per 1l'inizio.
playerlx=68:playerly=82
player0x=88:player0y=83

rem Genera la prima auto nemica.

gosub MakeNewCarl

rem Azzera i contatori di gioco.

g=0

e=0

Pagina 190 di 236

gioco.

missileOx=0:missileOy=0

rem --- Ciclo di Gioco Principale ---
main

y=y+l

if y>250 then y=1

if c<1 then c=1

rem Attiva il suono del motore del giocatore se non sta accelerando/frenando.
if joyOup then goto audskip

if joyOdown then goto audskip

AUDF0=18:AUDC0=14:AUDV0=10

rem Aumenta la difficolta massima dopo un certo tempo.

if t>240 then t=31

audskip
rem Resetta 1 flag quando l'auto nemica esce dallo schermo.
if scroll > 90 then o=0
if scroll > 96 then w=0 : h=0

if scroll > 96 then u=94

rem --- Logica dello Scrolling Verticale (Virgola Fissa) ---
rem 'scroll' e la posizione Y dell'auto nemica.

e=e+l

if e=2 && t < 10 then e=0:goto skipscroll

rem Incrementa la posizione verticale. Se esce dallo schermo, la resetta e aumenta la difficolta
("e") o

if scroll < 97 then scroll=scroll+l1.0 else scroll=0.0 : t=t+1
rem Aumenta la velocita di scrolling ai livelli piu alti.

if scroll < 97 && t > 35 then scroll=scroll+0.9 : mis=mis+0.9

skipscroll
rem Controlla se € necessario creare una nuova auto nemica.

gosub CarCreate

rem --- Logica IA e Generazione Ostacoli ---

v=rand

rem Ai livelli piu alti, l'auto nemica pud "sbandare" casualmente.
if t > 30 then skipmv

if t < 8 then goto skipmv

if t > 20 && v < 35 then u=u+l

skipmv

Pagina 191 di 236

rem Genera casualmente un posto di blocco (ball) in una delle 8 posizioni.
if v=2 && scroll > 86 then b = 75
if v=234 && scroll > 86 then b = 105

if v=112 && scroll > 86 then b

89
if v=50 && scroll > 86 then b = 81

if v=188 && scroll > 86 then b = 115
if v=166 && scroll > 86 then b = 79
if v=132 && scroll > 86 then b = 95
if v=176 && scroll > 86 then b = 111

rem Fa muovere l'auto nemica lateralmente in modo casuale.
if v < 10 then u=u+l

if v > 245 then u=u-2

rem Cambia il colore dell'auto nemica in base al livello di difficolta.
if t>20 && t<36 then COLUP1=104

if t>35 then COLUP1=68

rem Se l'auto nemica ha colpito un bordo, la fa muovere nella direzione opposta.
if d=1 then u=u+l

if d=2 then u=u-1

skiplr

rem Se un'auto nemica colpita da un missile esce dallo schermo, resetta il flag
if scroll > 96 then z=0

rem Se il flag 'z' & 0, l'auto nemica & visibile (NUSIZ1=1).

if z=0 then NUSIZ1=501

rem Aggiorna la posizione dell'auto nemica usando la variabile a virgola fissa.

playerly=scroll : playerlx=u

skiplrm

rem Seleziona lo sprite del giocatore in base alla sterzata.
if joyOleft then goto TurnCarl
if joyOright then goto TurnCar2
player0:

%01111110

%$01000010

$00111100

$10100101

$11100111

$10111101

$00111100

$10011001

Pagina 192 di 236

A

%11111111

$10011001

end

turned

rem --- Gestione Grafica e Scrolling ---

rem Fa scorrere la strada.

if joyOdown then skipscrl
pfscroll down

skipscrl

g=g+1

if g=2 then pfscroll down:g=0

skipsc

rem Imposta i1l colore del giocatore, che cambia in base ai danni subiti
if ¢ < 11 then COLUP0=128

if ¢ > 10 && c < 21 then COLUP0=60

if ¢ > 20 && ¢ < 31 then COLUP0=30

if ¢ > 30 && ¢ < 41 then COLUP0=64

if ¢ > 40 && c < 61 then COLUPO=y

playerOx=x : playerOy=p

rem Disegna i1 bordi della strada usando pfpixel.
pfpixel 7 1 on : pfpixel 25 1 on

pfpixel 7 3 on : pfpixel 25 3
pfpixel 7 5 on : pfpixel 25 5 on
pfpixel 7 7 on : pfpixel 25 7 on

pfpixel 7 9 on : pfpixel 25 9 on

drawscreen

rem Posiziona il posto di blocco (ball).

ballx=b : bally=scroll+l5 : ballheight=2

rem --- Gestione Input Giocatore (Movimento) ---
if joyOleft then x=x-1

if joyOright then x=x+1

rem Accelerare e frenare modifica la velocita di scrolling e il punteggio.

if joyOup then scroll=scroll+0.3 : mis=mis+0.5 : score=score+l0 : AUDF0=12:AUDC0=14:AUDV0=10

if joyOdown && scroll >=1 then scroll=scroll-0.3 : mis=mis-0.5 : score=score-10:

14:AUDV0=10
rem --- Logica dei Proiettili ---

rem Gestisce il proiettile del giocatore.

if joyOfire && g<l then AUDF1=8:AUDCl=1:AUDV1=15 : goto playerfires

Pagina 193 di 236

AUDF0=24 :AUDCO=

if g>0 then g=g-2 : missileOy=qg

if g>50 then AUDV1=0

rem Gestisce il proiettile dell'auto nemica.
if scroll >35 && t<10 then goto fireskip

if scroll >50 && t<36 then goto fireskip

if scroll >60 && t>35 then goto fireskip

if h=1 then goto fireskip

if scroll<=1 then mis=1.0 : AUDF1=13:AUDC1=1:AUDV1=9
if mis > 18 then AUDV1=0

missilely=mis : missilelx=u : missilelheight=6
mis=mis+2.0

goto pskip

fireskip

missilely=0: missilelx=0

pskip
rem --- Logica delle Collisioni ---
rem Collisione giocatore-bordo strada.
if collision(playfield,player0) && x > 75 then x=x-2
if collision(playfield,player0) && x < 75 then x=x+2
rem Collisione nemico-bordo strada (cambia la sua direzione) .
if collision(playerl,playfield) && u > 100 then d=2
if collision(playerl,playfield) && u < 80 then d=1

rem Rallenta il giocatore se tocca il bordo.

if collision(player0O,playfield) && scroll >=1 then scroll=scroll-0.5 : mis=mis-0.5

rem Collisione giocatore-nemico: aumenta i danni. Se troppi, game over.

if collision(playerl,player0) && w=1 then gosub addhitpoints

if w=1 then goto damageskip

if collision(playerl,player0O) then c=c+l : if c=60 then r=120: goto thisisit

if collision(playerl,player0) && scroll >=1 then scroll=scroll-1.5 : mis=mis-1.5
rem Collisione missile del giocatore-nemico.

if collision(playerl,missile0) then missileOy=1 : goto carhit

rem Collisione missile nemico-giocatore.

if collision(player0O,missilel) && x > 75 then c=c+l : x=x-2 : if c=60 then r=160:

if collision(player0O,missilel) && x < 75 then c=c+l : x=x+2 : if c=60 then r=160:

damageskip
rem Collisione giocatore-posto di blocco.
if collision(player0,ball) && u > 90 then x=x-6

if collision(player0,ball) && u < 90 then x=x+6
rem Aumenta i1l punteggio per il tempo sopravvissuto.

score=score+20

goto main

Pagina 194 di 236

goto thisisit

goto thisisit

rem --- Sezione delle Subroutine ---
playerfires
rem Crea il proiettile del giocatore.
if !switchleftb then missileOx=x+10 else missileOx=x+4
g=80 : missileOy=75
missileOheight=6
goto main
thisisit
rem Prepara la schermata di Game Over.
AUDV0=0
goto eog
carhit
rem Gestisce l'evento di un'auto nemica colpita.
a=u
z=1 : score = score + 1000 : missileOy=0 : g=0
a=u+8
if o<1 then goto skipblank
if o>0 then goto blankcar
skipblank
rem Fa scomparire l'auto nemica e pud generare un power-up.
if missileOx < a then NUSIZ1=0 : o=o+l : u=u+l6
if missileOx > a then NUSIZ1=0 : o=o+l
199 l=rand:if 1>215 then 199
1=1/8:1=1+1
if joyOup then goto main
if 1 < 10 && scroll > 1 then gosub powerup : w=l
goto main
eog
rem Sequenza di animazione e suono per il Game Over.
if r<l then r=88:goto eog2
r=r-1
gosub explode
COLUPF=r
AUDF0=160-r:AUDCO=1:AUDV0=6
drawscreen
goto eog
eog?2
rem Loop finale che attende il riavvio del gioco.
COLUP0=68

AUDV0=0

Pagina 195 di 236

if e=2 then pfscroll up:e=0

playerOy=r

playerly=0

missileOy=0

missilely=0

COLUPF=160

drawscreen

if r<1 then pfclear:goto init

ballx=0:bally=0

scroll=0

t=0

goto eog2
CarCreate

rem Seleziona casualmente uno dei 5 modelli di auto nemiche da creare.
if scroll<96 then return
200 l=rand:if 1>215 then 200

1=1/8:1=1+1

if 1>1 && 1<6 then gosub MakeNewCarl : return
if 1>5 && 1<11 then gosub MakeNewCar2 : return
if 1>10 && 1<16 then gosub MakeNewCar3 : return
if 1>15 && 1<21 then gosub MakeNewCar4 : return
if 1>20 && 1<28 then gosub MakeNewCar5 : return

return

rem --- Subroutine Grafiche ---
MakeNewCarl
playerl:
%$10011001
%$11111111
%$10011001
%00011000
%$10111101
$11111111
%$10011001
%00111100
end
return
MakeNewCar2
playerl:
%$10111101
$11111111
%10111101
%00100100

Pagina 196 di 236

%$11100111
%$10111101
%01000010
%01111110
end
return
MakeNewCar3
playerl:
%$10011001
$11111111
%$10011001
%00011000
%$11011011
$11111111
%11011011
%00100100
end
return
MakeNewCar4
playerl:
%$10011001
$11111111
%$10011001
%00011000
%00011000
%$10011001
$11111111
%$10011001
end
return
MakeNewCar5
playerl:
%$10011001
$11111111
%$10011001
%00111100
%$10100101
$11111111
%$10011001
%00100100
end
return

TurnCarl

Pagina 197 di 236

rem Sprite del giocatore che sterza a sinistra.
player0:
%01111110
%01000010
%$00111100
%$10100101
%$11100111
%$10111101
%$00111100
%01011001
$11111111
%$10011010
end
goto turned
TurnCar?2
rem Sprite del giocatore che sterza a destra.
playerO:
%01111110
%01000010
$00111100
%$10100101
%$11100111
%10111101
$00111100
%$10011010
$11111111
%01011001
end
goto turned
powerup
rem Attiva il power-up e cambia lo sprite nemico in quello del power-up.
h=1
missileOy=0: g=0
playerl:
$11111111
%$10000001
%$10011001
%$10011001
%$10111101
%$10111101
%$10011001
$10011001
%10000001

Pagina 198 di 236

%$11111111
end
return
addhitpoints
rem Se il power-up € attivo, il giocatore non subisce danni.
if h=1 then c=c-1
return
blankcar
rem Fa scomparire l'auto nemica dopo essere stata colpita.
u=94
playerl:
%00000000
end
goto main
explode
rem Sprite per l'animazione di esplosione del giocatore.
COLUPF=70
COLUP0=64
player0:
%01111110
%01000010
%00111100
$10100101
$11110111
$00111000
%$10001100
%$10011001
%01101110
%00000000
end
return
player0:
%$10000001
$00100100
$00000000
%00011001
%$10011000
$00000000
$00100100
%$10000001

End

Pagina 199 di 236

Disc

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

rem

rem

begin

rem
rem
rem
rem
play

XXXX

end

Dog

KK AR XA KA KKK

* Disc Dog *
* *
* DESCRIZIONE DEL GIOCO: e
* Un gioco ispirato allo sport del "disc dog". Il giocatore *

* controlla un cane (player0) che deve prendere al volo un frisbee*

* (playerl) prima che cada a terra. Il gioco & a tempo e si *
* perdono vite se il frisbee non viene preso. *
* *
* TECNICHE DI PROGRAMMAZIONE UTILIZZATE: &
* - IA dell'Oggetto: Il frisbee segue una traiettoria complessa *
R e la sua velocita cambia casualmente. R

* - Animazione Dinamica: Lo sprite del cane cambia in base alla *

* direzione del movimento. *
* - Manipolazione del Playfield: Vite e timer sono disegnati *
* manualmente sullo sfondo con "pfpixel’. *

* - Gestione degli Stati: Il codice usa variabili per tracciare *

B lo stato del cane (salto, corsa) e del disco (preso, in volo).*

R R

Etichetta di inizio gioco, usata per il riavvio completo.

-—- Definizioni Grafiche Iniziali ---
Disegna 3 blocchi per le 3 vite iniziali
Marcatori di bordo per il campo
Linea di terra

field:

):0,0:0:0:9:9:0.0.0.0:0:9.9:9.0.0.0:0:9:9.0.0.0:0:0.9.0:¢

Pagina 200 di 236

rem Grafica iniziale del cane (fermo)
player0:

$01000100

$01000100

$01111100

$01111100

%01111100

$10000111

$00000111

$00000100

end

rem Grafica del frisbee
playerl:

%01111110

%00011000

end

rem --- Impostazioni Iniziali dei Registri ---
rem Colore del playfield (es. l'erba)

COLUPF = 176

rem Colore del punteggio (non usato ma impostato)
scorecolor = 52

score = 0

rem Posizione iniziale del cane

playerOx = 21

playerOy = 80

rem Posizione iniziale del frisbee

playerlx = 138

playerly 65
rem Posizione iniziale dell'ombra del cane
missileOx = 82
missileOy = 79

missileOheight = 5

rem --- Alias delle Variabili (mappatura su a-z) ---

rem Stato del salto del cane (0=a terra, l=sale, 2=scende)
dim perrosalto = a

rem Direzione del frisbee (l=da dx a sx, 2=da sx a dx)

dim discodireccion = b

Pagina 201 di 236

rem Stato del frisbee (l=in volo, 2=preso dal cane)
dim discocogido = ¢

rem Punteggio (non usato, ma c'e la variabile)

dim puntos = d

rem Direzione in cui & rivolto il cane (l=dx, 2=sXx)
dim perrodireccion = e

rem Velocita orizzontale del frisbee

dim discovelocidad = £

rem Variabile temporanea per valori casuali

dim aleatorio = g

rem Altezza massima dell'arco del frisbee

dim discoaltura = h

rem Contatore delle vite del cane

dim perrovidas = i

rem Timer di gioco (conto alla rovescia disegnato su schermo)
dim cuentaatras = j

rem Coordinata X in cui il frisbee inizia a scendere
dim discoalturasube = k

rem Coordinata X in cui il frisbee inizia a salire
dim discoalturabaja = 1

rem Timer per rallentare il movimento verticale del frisbee

dim discoalturapaso = m

rem --- Inizializzazione delle Variabili di Gioco ---
puntos = 0

discocogido = 1

discodireccion = 1

perrodireccion = 1

discovelocidad = 2

perrovidas = 3

cuentaatras = 0

rem Calcola un'altezza casuale per il lancio
discoaltura = (rand & 10) + 1

discoalturasube = 18 + discoaltura

138 - discoaltura

discoalturabaja

discoalturapaso = 4

rem Ciclo di gioco principale.

mainloop
rem Silenzia il canale audio 0 all'inizio di ogni frame.

AUDVO = 0

rem Colore del cane (player0)

Pagina 202 di 236

COLUPO = 4
rem Colore del frisbee (playerl)

COLUPL = 132

rem --- Logica di Game Over ---

rem Se le vite sono finite, cambia colore e pulisce lo schermo.
if perrovidas = 0 then COLUPF = 52 : gosub limpiarpantalla

rem Disegna la scritta "GAME"

if perrovidas = 0 then gosub game

rem Disegna la scritta "OVER"

if perrovidas = 0 then gosub over

rem Se il gioco e finito e si preme fuoco, riavvia tutto.

if perrovidas = 0 && joyOfire then goto begin

rem --- Lettura Input Giocatore ---

if joyOleft && playerOx > 21 && perrovidas > 0 then gosub moverizquierda
if joyOright && playerOx < 133 && perrovidas > 0 then gosub moverderecha
rem Inizia la sequenza di salto

if joyOup && perrosalto = 0 && perrovidas > 0 then perrosalto = 1

rem --- Aggiornamento Timer Visivo (disegna una barra che si riempie) ---
if cuentaatras = 25 then pfpixel 21 1 on : missileOheight = 6

if cuentaatras = 50 then pfpixel 22 1 on

if cuentaatras = 75 then pfpixel 23 1 on : missileOheight = 7

if cuentaatras = 100 then pfpixel 24 1 on

if cuentaatras = 125 then pfpixel 25 1 on : missileOheight = 8

if cuentaatras = 150 then pfpixel 26 1 on

if cuentaatras = 175 then pfpixel 27 1 on : missileOheight = 9
if cuentaatras = 200 then pfpixel 28 1 on

if cuentaatras = 225 then pfpixel 29 1 on : missileOheight = 10

if cuentaatras = 250 then pfpixel 30 1 on

rem Se il timer arriva alla fine, il gioco termina.

if cuentaatras = 250 then perrovidas = 0

rem --- Logica di Stato del Frisbee ---
rem Se il cane ha il disco, lo tiene; altrimenti, muovi il disco.

if discocogido = 2 then gosub cogerdisco else gosub moverdisco

rem --- Logica del Salto del Cane ---
rem Se sta saltando (fase di salita)
if perrosalto = 1 then gosub saltarsubida

rem Se sta saltando (fase di discesa)

Pagina 203 di 236

if perrosalto = 2 then gosub saltarbajada

rem --- Controllo Collisioni ---
rem Se il cane tocca il frisbee, lo prende.

if collision(player0O,playerl) then discocogido = 2

rem Se il cane con il frisbee raggiunge uno dei bordi, lancia di

if playerOx = 21 && collision(playfield,playerl) && discocogido

if playerOx = 133 && collision(playfield,playerl) && discocogido

rem Se il cane tocca la sua ombra (missileO), perde una vita (e
ngere difficolta).

nuovo.
= 2 then gosub lanzardisco2

= 2 then gosub lanzardiscol

una meccanica di gioco per aggiu

if collision(player0O,missile0) then AUDVO = 15 : AUDCO = 6 : AUDFO = 4 : player0Ox = 21 : perrovi

das = perrovidas - 1

rem --- Aggiornamento Vite Visive ---

rem Spegne un blocco-vita se ne rimangono 2.

if perrovidas = 2 then pfpixel 5 1 off

rem Spegne un altro blocco-vita se ne rimane 1.
if perrovidas = 1 then pfpixel 3 1 off

rem Spegne l'ultimo blocco-vita.

if perrovidas = 0 then pfpixel 1 1 off

drawscreen

goto mainloop

rem Subroutine per lanciare il frisbee da destra verso sinistra.

lanzardiscol

rem Pulisce vecchi pixel del playfield
pfpixel 31 9 off

pfpixel 0 9 on

rem Suono di lancio

AUDVO = 5 : AUDCO = 12 : AUDFO = 4

rem Imposta lo stato del disco a "in volo".
discocogido = 1

playerly = 65

playerlx = 18

rem Imposta la direzione del disco.
discodireccion = 2

rem Calcola una velocita casuale.

aleatorio = (rand & 3) + 1

if aleatorio = 4 then discovelocidad = 4
if aleatorio = 3 then discovelocidad = 2
if aleatorio = 2 then discovelocidad = 1

Pagina 204 di 236

if aleatorio = 1 then discovelocidad = 1
score = score + 100

puntos = puntos + 100

cuentaatras = cuentaatras + 1

rem Calcola una nuova traiettoria casuale.
discoaltura = (rand & 10) + 1
discoalturasube = 138 - (discoaltura * 4)
discoalturabaja = 18 + (discoaltura * 4)
discoalturapaso = 4

return

rem Subroutine per lanciare il frisbee da sinistra verso destra.
lanzardisco?2

rem Pulisce vecchi pixel del playfield

pfpixel 31 9 on

pfpixel 0 9 off

rem Suono di lancio

AUDVO = 5 : AUDCO = 12 : AUDFO = 4

discocogido = 1

playerly 65

playerlx = 138

discodireccion = 1

rem Calcola una velocita casuale.

aleatorio = (rand & 3) + 1

if aleatorio = 4 then discovelocidad = 4

if aleatorio 3 then discovelocidad = 2

if aleatorio 2 then discovelocidad = 1

if aleatorio = 1 then discovelocidad = 1

score = score + 100

puntos = puntos + 100

cuentaatras = cuentaatras + 1

rem Calcola una nuova traiettoria casuale.
discoaltura = (rand & 10) + 1

discoalturabaja = 18 + (discoaltura * 4)

discoalturasube = 138 - (discoaltura * 4)
discoalturapaso = 4
return

rem Cambia la grafica del cane per il movimento a sinistra.
moverizquierda

player0:

$00100010

%$00100010

Pagina 205 di 236

$00111110

$00111110

$00111111

%$11100000

$11100000

$00100000
end

rem Imposta la direzione del cane.
perrodireccion = 2

rem Muove il cane.
playerOx = playerOx - 1

return

rem Cambia la grafica del cane per il movimento a destra.
moverderecha

player0:

%$01000100

%$01000100

%01111100

%01111100

%01111100

%$10000111

$00000111

%00000100
end

playerOx = playerOx + 1
perrodireccion = 1

return

rem Fase di salita del salto.

saltarsubida

playerOy = playerOy - 1

rem Se raggiunge l'apice, passa alla fase di discesa.

if playerOy = 62 then perrosalto = 2

rem Meccanica di penalita

if puntos >= 10 && perrosalto = 2 then score = score - 10 : puntos = puntos - 10

return

rem Fase di discesa del salto.
saltarbajada

playerOy = playerOy + 1

rem Se tocca terra, fine del salto.

if playerOy = 80 then perrosalto = 0

Pagina 206 di 236

return

rem Logica di movimento del frisbee in volo.
moverdisco

rem Rallenta il movimento verticale

if discoalturapaso > 1 then discoalturapaso = discoalturapaso - 1
rem --- Simulazione della traiettoria parabolica del frisbee ---
if discoalturapaso = 1 && playerlx <= discoalturabaja && discovelocidad = 1 && discodireccion

1 then playerly = playerly + 1 : discoalturapaso = 4

if discoalturapaso = 1 && playerlx >= discoalturasube && discovelocidad = 1 && discodireccion
1 then playerly = playerly - 1 : discoalturapaso = 4

if discoalturapaso = 1 && playerlx >= discoalturasube && discovelocidad = 1 && discodireccion
2 then playerly = playerly + 1 : discoalturapaso = 4

if discoalturapaso = 1 && playerlx <= discoalturabaja && discovelocidad = 1 && discodireccion
2 then playerly = playerly - 1l: discoalturapaso = 4

rem --- Movimento orizzontale e inversione ai bordi ---

if playerlx <= 138 && discodireccion = 1 then playerlx = playerlx - discovelocidad

if playerlx >= 18 && discodireccion = 2 then playerlx = playerlx + discovelocidad

rem Se tocca il bordo, inverte e aggiorna il timer.

if playerlx <= 18 then discodireccion = 2 : cuentaatras = cuentaatras + 1 : playerly = 65

if playerlx >= 138 then discodireccion = 1 : cuentaatras = cuentaatras + 1 : playerly = 65

AUDVO = 0

return

rem Logica per quando il cane ha preso il frisbee.
cogerdisco

rem Il frisbee segue il cane.

if perrodireccion = 1 then playerlx = playerOx + 6
if perrodireccion = 2 then playerlx = playerOx - 6
playerly = playerQOy - 5

return

rem Pulisce i pixel usati per 1'HUD.
limpiarpantalla

pfpixel 5 1 off

pfpixel 3 1 off

pfpixel 1 1 off

pfpixel 22 1 off

pfpixel 23 1 off

pfpixel 24 1 off

pfpixel 25 1 off

Pagina 207 di 236

pfpixel
pfpixel
pfpixel
pfpixel
pfpixel

pfpixel

26
27
28
29
30
31

drawscreen

return

rem Disegna

game

off
off
off
off
off

off

"GAME" sul playfield.

pfpixel 6 0 on

pfpixel 7 0 on

pfpixel 8 0 on

pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel

pfpixel

pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel

pfpixel

pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel

pfpixel

11
12
13
15
19
21
22
23
24

0

on

0 on

o o o o o

o

on

on

on

on

on

on

51 on

10
13
15
16
18
19
21

1

on

on

on

on

on

on

on

5 2 on

7 2 on

8 2 on

10
13
15
17
19
21
22

2

N NN

on

on

on

on

on

on

on

Pagina 208 di 236

pfpixel 5 3 on
pfpixel 8 3 on
pfpixel 10 3 on
pfpixel 11 3 on
pfpixel 12 3 on
pfpixel 13 3 on
pfpixel 15 3 on
pfpixel 19 3 on
pfpixel 21 3 on
pfpixel 6 4 on
pfpixel 7 4 on
pfpixel 10 4 on
pfpixel 13 4 on
pfpixel 15 4 on
pfpixel 19 4 on
pfpixel 21 4 on
pfpixel 22 4 on
pfpixel 23 4 on
pfpixel 24 4 on
drawscreen
return

rem Disegna

over

"OVER" sul playfield.

pfpixel 6 6 on

pfpixel 7 6 on

pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel

pfpixel

pfpixel
pfpixel
pfpixel

pfpixel

10 6 on
14 6 on
16 6 on
17 6 on
18 6 on
19 6 on
21 6 on
22 6 on
23 6 on
24 6 on
5 7 on
8 7 on
10 7 on
14 7 on

Pagina 209 di 236

pfpixel
pfpixel
pfpixel

pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel

pfpixel

pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel

pfpixel

pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel
pfpixel

pfpixel

16 7 on

21 7 on

24 7 on

5 8 on

8 8 on

10
14
16
17
21
22
23

© o

© ©© © o

on

on

on

on

on

on

5 9 on

8 9 on

11 9 on

13
16
21
23

8
9

10
10
10
10

on
on
on

on

off
off
off

off

10 10 off

11
13
14
15
20
22
23
25

drawscreen

return

10
10
10
10
10
10
10
10

off
off
off
off
off
off
off

off

Pagina 210 di 236

Parte 4: Appendici

U.S. Patent Feb. 26, 1985 Sheet1of4 4,501,424

Schema tecnico Atari 2600 — circuito e controller, 1983 (George C. Stone & Stuart E. Ross), dominio pubblico.

Pagina 211 di 236

Pagina 212 di 236

Appendice A: | Pilastri del Codice — Sintassi e Operatori

Questa appendice ¢ il tuo “cheat sheet” fondamentale. Contiene le regole d’oro della sintassi ¢ i
concetti base per “parlare” direttamente con la macchina. Quando hai un dubbio su come
strutturare il codice, su cosa sia un $ o su come funzionano gli operatori, questa e la prima pagina
da aprire.

1. Struttura del Codice e Indentazione
La posizione di una riga di codice ne determina la funzione. Un errore di indentazione é la causa
pit comune di problemi di compilazione.

Elemento Posizione Esempio

Etichetta (Label) Colonna 0 (nessuno spazio prima) main_loop:

end Colonna 0 (nessuno spazio prima) end

Istruzione/Comando | Indentata (almeno uno spazio) playerOx = 80

Dati Binari Indentati (almeno uno spazio) %11111111

Commento (rem o ;) Indentato (almeno uno spazio) rem Questo e un commento

Batari Basic ¢ molto pignolo sulla spaziatura. Se il compilatore ti da un errore “Illegal token”, la
prima cosa da controllare ¢ sempre I’indentazione. Assicurati che le etichette e gli end siano in
colonna 0 e che tutto il resto sia indentato.

2. Binario ed esadecimale
Noi contiamo in base 10, ma i computer “pensano” in modi diversi. Per programmare I’ Atari, ne
useremo principalmente due.

« Binario (%): ¢ il linguaggio fondamentale della macchina. Un bit € un singolo
interruttore: 0 (spento) o 1 (acceso). Un byte € un gruppo di 8 bit. Usiamo il prefisso %
per scrivere in binario, specialmente per la grafica. Esempio: %01100110 & un byte con i
bit 1, 2, 5 e 6 accesi. Il bit 0 ¢ quello “piu a destra”, il bit 7 ¢ quello “piu a sinistra”.

« Esadecimale ($): scrivere lunghi numeri binari & scomodo. Per questo, i programmatori
usano un sistema in base 16. Usa 16 “cifre”: i numeri da 0 a 9, piu le lettere da A a F per
rappresentare i valori da 10 a 15. Usiamo il prefisso $ per i numeri esadecimali. E un
modo compatto per scrivere i valori dei registri, specialmente per i colori. Esempio:
COLUBK = $8E

Come si converte un numero esadecimale come $8E?

Un numero esadecimale a due cifre, come $XY, e semplicemente una somma. La prima cifra (X)
va moltiplicata per 16, e la seconda (Y) va sommata al risultato. Ricorda che le lettere
A,B,C,D,E,F corrispondono ai numeri 10,11,12,13,14,15.

Prendiamo $8E: 1. La prima cifra € 8. 2. La seconda cifra e E, che in decimale vale 14. 3. La
formulae: (8 * 16) + 14 =142.

Quindi, COLUBK = $8E ¢ la stessa cosa di COLUBK = 142

Pagina 213 di 236

Con questo metodo, puoi decifrare velocemente alcuni valori chiave:
$00 = (0 * 16) + 0 = 0 (il valore minimo di un byte).
$FF = (15 * 16) + 15 = 240 + 15 = 255 (il valore massimo di un byte).

Come si “vede” un numero decimale in binario?

Il processo inverso, da decimale a binario, & ancora piu utile per la programmazione grafica. Si
tratta di trovare quali potenze del 2, sommate insieme, danno il tuo numero.

Immagina di voler rappresentare il numero 166 in binario. Parti dalla potenza del 2 piu alta (128)
e scendi, chiedendoti: “Ci sta?”.

« 11128 cistain 1667 Si. Restano 166 - 128 =38. —» Bit7=1
+ 1l64cistain38? No. —» Bit6=0

 1I32cistain 38? Si. Restano 38-32=6. > Bit5=1

« 1l16cistain6? No. —» Bit4=0

« L’8cistain6? No. —» Bit3=0

« Il4cistain6? Si. Restano6-4=2. -> Bit2=1

« Il2cistain2? Si.Restano2-2=0. > Bit1=1

« L’lcistain0? No. —» Bit0=0

Mettendo insieme i bit da 7 a 0, otteniamo: %10100110.
Questa tecnica ti permette di “pensare in binario” e di capire immediatamente quali bit (e quindi
quali pixel in uno sprite) sono accesi 0 spenti in un dato valore numerico.

3. Operatori Matematici e Logici

Operatore | Nome Esempio Descrizione
+ Addizione a=5+3 Somma due numeri.
- Sottrazione a=5-3 Sottrae un numero da un altro.
* Moltiplicazione a=5*3 Moltiplica due numeri.
Divisione Intera a=5/2 Divide due numeri e scarta il
resto (il risultato € 2).
0 Parentesi a=05B+3)*2 Forza I’ordine delle operazioni.

Le espressioni tra parentesi
vengono calcolate per prime.

&& AND Logico (E) ifa>0&&Db>0 Restituisce “vero” solo se
entrambe le condizioni sono
vere.

| OR Logico ifa>0| b>0 Restituisce “vero” se almeno
(OPPURE) una delle condizioni é vera.

! NOT Logico if ljoyOfire Inverte il valore di una
(NON) condizione (vero diventa falso,

falso diventa vero).

Pagina 214 di 236

4. Operatori Bitwise

Questi operatori ti permettono di manipolare i singoli bit all’interno di un byte. Sono strumenti

avanzati per ottimizzazioni estreme.

Operatore | Nome

Esempio

Descrizione

& AND Bitwise

a=a& %00001111

Mantiene solo i bit che sono 1 in
entrambi 1 valori (“maschera”).

| OR Bitwise

a=a| %00000001

“Accende” un bit (lo imposta a
1) senza modificare gli altri.

N XOR Bitwise

a=a” %00000001

Inverte lo stato di un bit (da0 a
1 o viceversa, “flip”).

<< Shift a Sinistra

a=a<<l1

Sposta tutti i bit a sinistra.
Equivale a moltiplicare per 2.
Molto veloce!

Se ad esempio vuoi moltiplicare
per 5 (4+1) velocemente, puoi
fare:

a=(a<<2)+a

>> Shift a Destra

a=a>>1

Sposta tutti i bit a destra.
Equivale a dividere per 2. Molto
veloce!

Pagina 215 di 236

Appendice B: Il Cruscotto dell’Atari — Guida ai Registri e alle Variabili Speciali

Questa appendice ¢ il tuo manuale tecnico per “parlare” direttamente con 1’hardware dell’ Atari
2600. Conoscerli ti dara il pieno controllo.

1. Gerarchia di Visibilita degli Oggetti (Ordine di Disegno)
Sull’ Atari 2600, gli oggetti vengono disegnati su strati fissi, come fogli di acetato trasparenti
impilati uno sull’altro. L’ordine di base, dal piu lontano al piu vicino, ¢:

Sfondo (COLUBK) — Playfield (playfield) / Palla (ball) — Player 1 / Missile 1 — Player 0/
Missile 0

Questo significa che, di default, playerO apparira sempre sopra a playerl. Questo ordine puo
essere alterato con il registro CTRLPF.

2. Tabella Completa dei Registri e Variabili Speciali

Questa tabella ¢ il tuo riferimento rapido per le parole chiave che controllano la grafica e I’audio.
Ricordati che volatile significa che dopo un drawscreen il suo valore é azzerato e che quindi
dobbiamo ripristinarlo ad ogni frame (nel main_loop).

Nome Scopo Breve Capitolo | Volatile? | Note / Valori Comuni

Registro/Variabile

Colori (Registri

TIA)

COLUBK Colore di Sfondo 2 No $00 (nero) - $FE
(bianco). Valori
esadecimali.

COLUPF Colore Playfield e Palla 4 Si Valori esadecimali. Va
reimpostato ad ogni
frame.

COLUPO Colore Player 0 e Missile 0 | 2 Si Valori esadecimali. Va
reimpostato ad ogni
frame.

COLUP1 Colore Player 1 e Missile 1 | 7 Si Valori esadecimali. Va
reimpostato ad ogni
frame.

Posizioni

(Registri TIA)

playerOx, Posizione Sprite Player 0 2 No x: 0-159 (circa), y: 0-95

playerOy (circa).

playerlx, Posizione Sprite Player 1 7 No x: 0-159 (circa), y: 0-95

playerly (circa).

missile0x, Posizione Missile 0 8 No x: 0-159 (circa), y: 0-95

missileQy (circa).

missilelx, Posizione Missile 1 8 No x: 0-159 (circa), y: 0-95

missilely (circa).

Pagina 216 di 236

Nome Scopo Breve Capitolo | Volatile? | Note / Valori Comuni
Registro/Variabile
ballx, bally Posizione Palla 7 No x: 0-159 (circa), y: 0-95
(circa).
Controllo
Grafico (Registri
TIA)
REFPO, REFP1 Riflessione Orizzontale 3 Si 0 (normale), 8
Sprite (specchiato).
NUSIZ0, NUSIZ1 | Dimensione/Copie 8 Si Sintassi $MP. M
Sprite/Missili (missile): 0-3 (1-8px). P
(player): 5 (doppio), 7
(quadruplo).
CTRLPF Controllo Palla e Priorita 4,8 No Somma di valori: bit
2=4 (priorita), bit 4-5
(16, 32, 48) per
larghezza palla.
missileOheight, Altezza Missili (in pixel) 8 No Valori 1-8. 1 e usato per
missilelheight oggetti orizzontali.
ballheight Altezza Palla (in pixel) 8 No Valori 1-8.
Input
Joystick 0
(Comandi
RIOT)
joyOfire Lettura pulsante fuoco 3 N/A Restituisce vero/falso in
Giocatore 1 un if.
joyOup Lettura direzione SU 3 N/A Restituisce vero/falso in
Giocatore 1 un if.
joyOdown Lettura direzione GIU 3 N/A Restituisce vero/falso in
Giocatore 1 un if.
joyOleft Lettura direzione 3 N/A Restituisce vero/falso in
SINISTRA Giocatore 1 un if.
joyOright Lettura direzione DESTRA | 3 N/A Restituisce vero/falso in
Giocatore 1 un if.
Input
Joystick 1
(Comandi
RIOT)
joyifire Lettura pulsante fuoco 3 N/A Restituisce vero/falso in
Giocatore 2 un if.
joylup Lettura direzione SU 3 N/A Restituisce vero/falso in
Giocatore 2 un if.
joyldown Lettura direzione GIU 3 N/A Restituisce vero/falso in
Giocatore 2 un if.
joylleft Lettura direzione 3 N/A Restituisce vero/falso in

SINISTRA Giocatore 2

un if.

Pagina 217 di 236

Nome Scopo Breve Capitolo | Volatile? | Note / Valori Comuni
Registro/Variabile
joylright Lettura direzione DESTRA | 3 N/A Restituisce vero/falso in
Giocatore 2 un if.
Input
Interruttori
Console
(Comandi
RIOT)
switchreset Lettura interruttore GAME | 3 N/A Restituisce vero se
RESET premuto.
Switchselect Lettura interruttore GAME | 3 N/A Restituisce vero se
SELECT premuto.
Switchbw Lettura interruttore 3 N/A Restituisce vero se in
COLOR/B&W posizione B&W.
Switchleftb Lettura interruttore DIFF. | 3 N/A Restituisce vero se in
SINISTRO posizione B (beginner).
switchrightb Lettura interruttore DIFF. | 3 N/A Restituisce vero se in
DESTRO posizione B (beginner).
Audio (Registri
TIA)
AUDVO0, AUDV1 | Volume CanaliOe 1 5 No 0 (silenzio) - 15
(massimo).
AUDCO0, AUDCL1 | Timbro (tipo di suono) 5 No 0-15. Vedi Appendice
D per la tabella.
AUDFO, AUDF1 | Frequenza (intonazione) 5 No 0 (acuto) - 31 (grave).
HUD (Punteggio
- Variabili
Speciali)
score Variabile punteggio a 6 14 No Formato BCD da0O a
cifre 9999909.
scorecolor Colore del testo dello score | 14 No Valori esadecimali.
const noscore =1 | Nasconde lo score 14 N/A Costante da definire a
inizio codice.
const scorefade = | Attiva effetto sfumato 14 N/A Costante da definire a
1 inizio codice.
set pfscore on Attiva le barre di stato 14 N/A Direttiva da inserire a
inizio codice.
pfscorecolor Colore delle barre di stato | 14 No Valori esadecimali.
pfscorel, pfscore2 | Dati binari per le barre 14 No Valori in binario (es.

%11110000).

Nota: N/A = non attinente

Pagina 218 di 236

3. Moltiplicare gli Oggetti: Trucchi con NUSIZ e CTRLPF

Hai imparato a disegnare e muovere i tuoi cinque oggetti grafici. Ma se osservi i giochi classici,
vedrai cose che sembrano impossibili: racchette da tennis larghe, proiettili che sono piu spessi di
un normale missile, o addirittura pit copie dello stesso giocatore sullo schermo. Come ¢
possibile?

La risposta non sta nel creare nuovi oggetti, ma nell’alterare quelli esistenti usando due dei
registri di controllo piu potenti del TIA: NUSIZ e CTRLPF. In questa appendice, impareremo a
moltiplicare, allargare e allungare i nostri attori digitali.

I registri NUSIZO0 (per playerO/missile0) e NUSIZ1 (per playerl/missilel) sono speciali. Ognuno
¢ un singolo byte, ma il TIA lo interpreta come due meta separate (due “nybble” da 4 bit) che
controllano due cose diverse:

* | bit “a destra”: Controllano il Player (playerO o playerl).
* | bit “a sinistra”: Controllano il Missile (missile0 o missilel).

Per impostarli, usiamo un singolo numero esadecimale $MP, dove M e il valore per il Missile e P
e il valore per il Player.

Controllare i Missili (la parte M)
La parte M del registro controlla semplicemente la larghezza del missile.

Valore di M Impostazione Larghezza Missile
0 NUSIZx = $0_ 1 pixel (default)
1 NUSIZx = $1 2 pixel
2 NUSIZx = $2_ 4 pixel
3 NUSIZx = $3 8 pixel

Questo ¢ il trucco che abbiamo usato per creare la “spada” orizzontale! Con NUSIZ0 = $30,
abbiamo impostato la larghezza di missile0 a 8 pixel.

Controllare i Player (la parte P)
La parte P € molto piu interessante. Permette di moltiplicare o allargare lo sprite del giocatore.

Valore di P Impostazione Effetto sul Player
0 NUSIZx=$ 0 1 copia, larghezza normale (default)
1 NUSIZx =% 1 2 copie, vicine
2 NUSIZx=$ 2 2 copie, a media distanza
3 NUSIZx=$ 3 3 copie, vicine
4 NUSIZx=$ 4 2 copie, a lunga distanza
5 NUSIZx=$ 5 Doppia larghezza (x2)
6 NUSIZx=$ 6 3 copie, a media distanza
7 NUSIZx=$ 7 Quadrupla larghezza (x4)

Pagina 219 di 236

p=0 =

p=1 ¥ ¥

p=2 . =

p=3 % ¥ 3

p=4 < =
Pp=5 ==

p=56 = = =
p=7 ——=

Ricorda, NUSIZ0 e NUSIZ1 sono volatili! Devono essere reimpostati ad ogni frame nel
main_loop se vuoi che il loro effetto sia persistente. Quando imposti un valore, ad esempio
NUSIZ0 = $35, stai impostando contemporaneamente la larghezza del missile (M=3) ¢ I’effetto
sul player (P=5).

E per la ball? Non ha un registro NUSIZ dedicato. La sua larghezza é controllata da due bit
all’interno del registro CTRLPF, lo stesso che usiamo per la priorita.

A differenza di NUSIZ, CTRLPF non ¢ volatile. Di solito lo si imposta una volta all’inizio del
gioco.

Valore per CTRLPF Larghezza Palla
0 1 pixel (default)
16 2 pixel
32 4 pixel
48 8 pixel

Poiché CTRLPF controlla piu cose, i suoi valori vanno combinati. Se vuoi una palla larga 4 pixel
(32) e vuoi che il Playfield abbia la priorita sugli sprite (4), imposterai CTRLPF alla loro somma:
CTRLPF =32 + 4 ; Risultato: 36

Padroneggiare NUSIZ e CTRLPF ti permette di superare i limiti grafici apparenti della console.
Puoi creare sprite imponenti, effetti visivi interessanti e oggetti che si adattano meglio alle
necessita del tuo gioco, trasformando i 5 oggetti base in un arsenale grafico molto piu versatile.

Pagina 220 di 236

Appendice C: Ricette di Codice Avanzate

Questa appendice contiene “ricette” di codice complete e funzionanti per alcune delle tecniche di
programmazione piu potenti e utili.

1. Il Centralino Veloce: on...gosub e on...goto

Hai una macchina a stati con molti stati diversi (es. diversi tipi di nemici) e una lunga catena di if
sta rallentando il tuo main loop?

La soluzione é usare le istruzioni on...gosub 0 on...goto per creare un “centralino” velocissimo
che smista I’esecuzione alla subroutine o all’etichetta corretta in base al valore di una variabile.

2. on...gosub
Questa versione e ideale quando ogni blocco di codice deve terminare con un return per tornare
al punto di chiamata. Attenzione: dopo on segue solo una variabile, non puoi usare espressioni
come “x+17 o0 “x+y”.

dim enemy type = a ; 0=Goomba, l=Koopa, 2=Beetle

main_loop
; ... logica del gioco ...

on enemy type gosub goomba ai, koopa ai, beetle ai ; in base al valore di enemy type il program
ma va ad una subroutine diversa

. resto del main loop ...
drawscreen
goto main_loop

goomba ai ; arrivo qui se enemy type e 0
COLUBK = $D8 : return

koopa_ai ; arrivo qui se enemy type e 1
COLUBK = $9E : return

beetle ai ; arrivo qui se enemy type & 2

COLUBK = $88 : return

3. on...goto
Questa versione e utile quando ogni blocco di codice deve poi proseguire verso una parte
comune del programma, usando goto invece di return.

dim enemy type = a ; 0=Goomba, 1=Koopa, 2=Beetle

main loop
; ... logica del gioco ...

rem --- Centralino IA ---
on enemy type goto goomba ai, koopa ai, beetle ai

continue logic
; ... logica comune che prosegue dopo la scelta del nemico ...

drawscreen
goto main_loop

goomba_ ai

COLUBK = $D8 : goto continue logic
koopa_ai

COLUBK = $9E : goto continue logic
beetle ai

COLUBK = $88 : goto continue logic

Pagina 221 di 236

4. Gestione dei numeri casuali

Il comando rand produce una sequenza di numeri che, se non diversamente specificato, e sempre
la stessa a ogni avvio del gioco. Una possibile soluzione e usare il tempo che il giocatore passa
nella schermata del titolo come “seme” (seed) per il generatore di numeri casuali. Infatti per
“cambiare” la generazione della sequenza di numeri casuali basta assegnare a rand un numero
diverso ogni volta.

dim randseed = k
dim gamestate = f ; 1=Titolo, 2=Gioco

gamestate = 1

main_ loop
if gamestate
if gamestate
drawscreen
goto main loop

1 then gosub state title
2 then gosub state gameplay

state title
; ...logica della schermata del titolo...

rem Il contatore 'randseed' aumenta finché siamo nel titolo
randseed = randseed + 1

if !joyOfire then goto state title

rem Usa 1l contatore come seme. Per forzare il seme, si scrive rand = seme

if randseed = 0 then rand = 1 ; Il seme 0 non é& valido, quindi usiamo 1 in questo caso.
if randseed <> 0 then rand = randseed

gamestate = 2

return

state gameplay
; ...logica di inizializzazione del gioco...
playerOx = rand ; Questa posizione sara diversa a ogni partita!

randseed € un contatore che aumenta finché il giocatore non preme fuoco e poiché questo
momento ¢ “casuale”, lo sara anche randseed il cui valore viene poi assegnato a rand che da li in
poi generera un sequenza casuale diversa.

5. Range casuali
Per generare numeri casuali all’interno di un intervallo specifico, la chiave ¢ 1’operatore bitwise
& (AND). E una tecnica estremamente veloce ed efficiente.

Codice Range del Risultato
a=(rand & 1) 0ol

a=(rand & 3) da0a3

a=(rand & 7) daOa?

a = (rand & 15) da0als

a=(rand & 31) da0a3l

a = (rand & 63) daOa63

a=(rand & 127) da0al27

Per ottenere un range che parte da 1, basta aggiungere 1 al risultato (es. a = (rand & 3) + 1 per
unrangedala4).

Pagina 222 di 236

6. Posizionamento Casuale e Intelligente degli Sprite

Invece di generare un numero e poi controllarlo con un if, possiamo usare la tecnica dei range
per generare direttamente un numero nell’intervallo desiderato.

Esempio: Posizionare un nemico tra le coordinate X=21 e X=131

1. Offset di Partenza: Il nostro numero minimo é 21.
2. Ampiezza del Range: 131 - 21 = 110. Dobbiamo generare un numero casuale da 0 a 110.

3. Scomposizione in Potenze di 2: 110 e 64 + 32 + 8 + 4 + 2. Per mascherare i bit
corrispondenti, useremo i valori 63 (per i primi 6 bit), 31 (5 bit), 15 (4 bit) e 1 (1 bit). La
combinazione piu efficiente € scomporre 110 come 63 + 31 + 15 + 1.

4. Costruzione della Formula:
playerlx = (rand & 63) + (rand & 31) + (rand & 15) + (rand & 1) + 21

7. Generare -1 o +1 Casualmente
Per decidere casualmente una direzione (positiva o negativa), si puo usare un trucco con il
complemento a due.

rem Genera un valore casuale che sara -1 oppure +1
a = 255 + (rand & 2)

1. (rand & 2) puo dare solo 0 o 2.
2. Seil risultato ¢ 0: a =255+ 0 — a =255 (che per la CPU equivale a -1).

3. Seil risultato € 2: a=255+2 — a=257. A causa dell’overflow (superamento del limite
255), il risultato diventa 1.

Questa tecnica é perfetta per invertire casualmente una velocita: velocita_x = velocita_x * a

8. Le Variabili temp: La Memoria “Usa e Getta”

A volte, all’interno di una singola subroutine, hai bisogno di una variabile “di servizio” solo per
un breve calcolo, ma hai gia usato tutte le lettere a-z per dati importanti del gioco.

In tal caso puoi usare le variabili temporanee. Batari Basic mette a disposizione 6 variabili
speciali chiamate temp1, temp2, temp3, temp4, temp5 e temp6.

Le variabili temp sono estremamente volatili. Il loro contenuto viene cancellato dopo ogni
drawscreen e puo essere sovrascritto da molti comandi interni di Batari Basic (specialmente
calcoli complessi). Usa le variabili temp solo per calcoli molto brevi all’interno di una singola
subroutine e non fare mai affidamento sul fatto che il loro valore si mantenga tra un ciclo e
I’altro del main_loop. Esiste anche una variabile temp7, ma é riservata al meccanismo di
bankswitching. Non usarla mai!

9.Gli Array data: Archivi di Informazioni nella ROM
A volte hai bisogno di conservare una lista di valori che non cambiano mai, come le posizioni di
partenza dei nemici, una sequenza di colori o i dati di un livello.

Pagina 223 di 236

In questo caso puoi usare un array data. Un array data é una tabella memorizzata nella ROM
(memoria di sola lettura) da cui puoi leggere qualsiasi elemento in qualsiasi momento, usando la
sua posizione (indice). Per creare un array data, si usa una sintassi a blocco:

data <nome_array> ... end
Per leggere un valore, si usa la sintassi
<nome_array>[indice]
dove I’indice parte da 0.

Questo esempio crea una tabella di 7 colori e la usa per far ciclare il colore dello sfondo ogni
volta che si preme il pulsante di fuoco.

rem Ciclo Colori con Array data

set romsize 2k

set smartbranching on
dim color index = a

main_loop

if joyOfire then color index = color index + 1

rem Se l'indice supera la dimensione dell'array, lo azzera

if color index > 6 then color index = 0

rem Leggil il colore dall'array e assegnalo allo sfondo

COLUBK = palette colors[color index]

drawscreen

goto main loop

rem --- Definisci la tua tavolozza di colori in un array data ---
data palette colors
S1E, $48, $86, $9C, $D4, SEA, $34

end

Ad ogni pressione del fuoco, color_index viene incrementato. Il nuovo valore dell’indice viene
usato per “pescare” un colore dall’array palette_colors, che viene poi assegnato a COLUBK.
Essendo memorizzati in ROM, non puoi modificare i valori di un array data durante il gioco (es.
palette_colors[0] = $FF non funzionerd). Inoltre un singolo array data non puo contenere piu di
256 valori. Infine, se cerchi di leggere un indice che non esiste (es. palette_colors[10]), il
programma non dara errore, ma leggera “spazzatura” dalla memoria, con risultati imprevedibili.

Pagina 224 di 236

10. Le “Comb Lines” e la Maschera Nera

A volte possono apparire delle sottili linee nere frastagliate a sinistra: le “Comb Lines”. La CPU
¢ troppo impegnata a riposizionare gli sprite e “perde la corsa contro il raggio” per un istante.
Una possibile soluzione ¢ disegnare una colonna verticale nera sopra di esse usando il registro
PFO per nasconderle, i cui primi 4 bit permettono di riempire le 4 colonne piu a sinistra dello
schermo.

main loop

COLUBK = $1E ; Sfondo giallo
COLUPF = $00 ; Playfield nero

PFO = %11110000 ; riempi le 4 colonne a sinistra
; ... logica del gioco ...
drawscreen

goto main_ loop

Attenzione: se usi PFO con un playfield multicolore (pfcolors), il pixel piu in basso della barra
PFO potrebbe assumere il colore shagliato. Per risolvere, se il tuo playfield ha 11 righe, definisci
12 colori nel blocco pfcolors:, assicurandoti che il dodicesimo colore sia identico
all’undicesimo.

. OoooOoO
. OoOoOooo

EISEGA 1982

Un esempio di comb lines

11. Eliminare le Linee Nere del Playfield con no_blank_lines
Per ottenere uno sfondo solido e continuo, puoi eliminare le linee di separazione tra le righe del
Playfield usando un’opzione speciale del kernel.

set kernel_options no_blank_lines

Attenzione: perdi completamente I’uso di missile0. Questa opzione & compatibile con poche
altre opzioni del kernel. Inoltre, se usi no_blank_lines insieme a pfcolors, noterai che ogni riga
del Playfield avra una sottile “glassa” in cima, colorata con il colore della riga precedente. Puoi
sfruttare questo problema a tuo vantaggio per creare sfondi dall’aspetto quasi ad “alta
risoluzione”, con linee sottili per disegnare griglie o altri dettagli.

12. Aritmetica BCD e score
La variabile score é speciale: usa un formato numerico chiamato BCD (Binary-Coded Decimal).
Batari Basic offre un comando apposito per lI'aritmetica BCD: dec.

Pagina 225 di 236

Usa dec per aggiungere o sottrarre valori allo score. | numeri che aggiungi devono pero essere in
formato esadecimale, ma "pensati** come decimali, e non possono superare $99. Ad esempio, per
aggiungere 15 punti, bisogna scrivere:

dec score = score + $15

Usando dec puoi anche sommare il contenuto di una variabile, scrivendone anche per essa i
valori in esadecimale:

p = $15

dec score = score + p

score € internamente composto da tre byte di memoria: scl, sc2 e sc3, che possono rappresentare
ognuno un numero da 0 a 99.

Quando sc3 supera $99 ritorna a $00 e viene incrementato sc2. Quando sc2 supera $99 ritorna a
$00 e viene incrementato sc1. Quando scl, sc2, sc3 vanno sotto zero, diventano $99!

Ognuno di questi byte contiene due cifre decimali in formato BCD (Binary-Coded Decimal),
ovvero ogni cifrada 0 a 9 e codificata in 4 bit:

scl: Cifra delle Centinaia di Migliaia + Cifra Decine di Migliaia
sc2: Cifra delle Migliaia + Cifra delle Centinaia
sc3: Cifra delle Decine + Cifra delle Unita

Si puo agire separatamente su scl, sc2, sc3 con questo codice:

dim scl = score ; Crea Alias per il byte piu significativo dello score.
dim sc2 = score+l; Crea Alias per il byte centrale.
dim sc3 = score+2; Crea Alias per il byte meno significativo.

Essendo normali variabili byte, possiamo poi usare if per controllare un certo stato del punteggio.
Ad esempio:

if scl = $00 && _sc2 $00 && _sc3 < $10 then ... ; il punteggio & minore di 10

if _scl $99 && _sc2 $99 && _sc3 <= $99 then ... ; il punteggio e andato sotto 0

Pagina 226 di 236

Appendice D: La Sala del Compositore — Guida ai Suoni e alle Note

Benvenuto nella sala del compositore! In questa sezione troverai tutto cio che ti serve per dare
una voce ai tuoi giochi. L’ Atari 2600 ha un sistema sonoro semplice ma sorprendentemente
versatile, capace di creare dai beep iconici di Space Invaders ai complessi rombi di motore di

River Raid.

1.1 Registri del Suono (le Manopole del Sintetizzatore)
Il chip TIA ha due canali audio indipendenti (Canale 0 e Canale 1). Per ogni canale, devi
regolare tre “manopole” (registri) per produrre un suono. Tutti i registri audio sono persistenti:
una volta impostati, continueranno a produrre suono finché non li modificherai o non azzererai il

volume.
Registro Scopo Range Note

Valori
AUDVO/ Volume 0-15 Controlla la potenza del suono. 0 é silenzio, 15 ¢ il
AUDV1 volume massimo. E 'unico modo per spegnere un

suono.

AUDCO/ Timbro 0-15 Controlla la “voce” o la “texture” del suono. Ogni
AUDC1 valore seleziona un tipo di suono diverso.
AUDFO / Frequenza | 0 - 31 Controlla I’intonazione (la nota). Attenzione: valori
AUDF1 bassi = suoni acuti; valori alti = suoni gravi.

2.La Scelta dello Strumento (il Registro AUDC)
Il registro AUDC ¢ il cuore creativo del suono Atari. Ogni valore seleziona un “timbro” o

“strumento” diverso. Scegliere lo strumento giusto ¢ il primo passo per comporre la tua melodia
0 il tuo effetto sonoro.

Timbro Strumento / Descrizione Uso Tipico

(AUDC)

4,5,12,13 | Tono Puro (Flauto): Pulito e rotondo. I | Melodie, suoni di raccolta oggetti,
valori 12 e 13 raggiungono note piu effetti positivi. Il piu musicale tra i
gravi. timbri.

6, 10 Tono Intermedio: Un suono a meta tra il | Suoni di avviso, allarmi non troppo
puro e il ronzante. aggressivi .

7,9 Tono “Ancia”: Aspro, brillante e Motori, allarmi acuti, suoni aggressivi.
penetrante.

1 Tono “Buzzy”: Ronzante, distorto e Laser, spari, suoni stridenti e
molto elettronico. fantascientifici.

3 Tono “UFO”: Fluttuante, modulato, Sirene, effetti speciali, suoni alieni.
quasi un lamento.

2,14,15 Rombi e Distorsioni: Suoni complessi Motori potenti, suoni cupi, impatti
con bassi profondi che si trasformano in | pesanti.
rombi.

8 Rumore Bianco: Un fruscio puro, simile | Esplosioni, spari, vento, onde del
al suono di una TV non sintonizzata. mare.

0,11 Silenzio -

Pagina 227 di 236

3.La Partitura: Tavola Completa delle Note (il Registro AUDF)

Il registro AUDF controlla I’intonazione. Ricorda sempre la regola d’oro: piu basso ¢ il valore,
piu acuta € la nota. A causa del modo in cui I’hardware genera i suoni, non tutte le note sono
perfettamente intonate. La tabella seguente elenca le note piu “pure” e utilizzabili per ogni
strumento, coprendo quasi 5 ottave.

Come leggere la tabella: Cerca la nota desiderata. La colonna “Valore AUDF” ti da il numero
da usare. La colonna “Strumenti Migliori” indica con quali timbri (AUDC) quella nota suona piu
intonata.

Ottava Nota | Valore AUDF Strumenti Migliori (AUDC)
Ottava 1 (la piu alta) Do 3 1
Do# |0, 1 1,2,3
Fa 2 1,2,3
Ottava 2 Do 7,15 1,7,9
Do# |6, 14 1,6, 10
Re 13 1,6, 10
Mi 11,12 2,3,6,10,12,13
Fa 11,29 1,12,13
Fa# 10 3,6,10
Sol 9,19, 20 3,7,9
Sol# 19,19 1,3,4,5,6,10
La 8, 18 4,5
La# 8, 17 1,2,3,4,5,/12,13
Si 16 1,2,3,4,5,12,13
Ottava 3 (centrale) Do 29 4,5,12,13
Do# |28 6, 10
Re 27 2,3,6,10
Re# 26 12,13
Mi 25 2,3
Fa 23, 29 12,13
Fat# 22 2,3,12,13
Sol 21 6, 10, 12, 13
Sol# | 20, 24 12,13
La 18 4,5,6,10,12,13
La# 17,22 12,13
Si 16, 21, 30 12,13
Ottava 4 (bassa) Do 29 12,13
Re 27 12,13
Mi 25, 31 12,13
Fa 23,29 12,13
Fa# 22,27 12,13
Sol 20, 26 12,13
Sol# | 19,24 12,13
La 18, 23 12,13
La# 17,22 12,13

Pagina 228 di 236

Ottava Nota | Valore AUDF Strumenti Migliori (AUDC)
Si 16, 21, 30, 31 12,13
Ottava 5 (la piu grave) Do 29 12,13
Re 27 12,13
Mi 31 12,13
Fa 29 12,13
Sol 26 12,13

Come puoi vedere, le note non sono distribuite in modo uniforme. A volte, la stessa nota si
ottiene con valori AUDF diversi, e alcune note semplicemente non esistono per certi timbri.
Comporre per I’ Atari 2600 ¢ come suonare un vecchio organo: bisogna conoscere lo strumento e
adattare la melodia alle sue peculiarita, scegliendo le note e i timbri che funzionano meglio
insieme.

4.1l Motore Musicale: Creare Melodie con sdata

I “Sound Timer” sono perfetti per effetti sonori brevi, ma come si fa a creare una colonna sonora
complessa? La soluzione e costruire un motore musicale, una piccola macchina software che
legge una “partitura” dalla memoria e la suona.

Le normali tabelle data sono come array e sono limitate a circa 256 byte. Per una canzone, non
bastano.

sdata (Sequential Data) crea un flusso di dati che puo essere letto solo in sequenza, uno dopo
I’altro, come leggere le parole di un libro. Questo permette di creare tabelle di dati grandi quanto
I’intera memoria ROM. Ecco come funziona:

sdata music_data = x

sdata: Dichiara I’inizio di una tabella di dati sequenziali.

music_data: E il nome che diamo alla nostra “playlist”.

= x: Questo ¢ il pezzo cruciale. Stiamo dicendo a Batari Basic di usare la variabile x come
puntatore (si puo usare qualsiasi variabile a..z)

y = sread(music_data)

sread: E il comando per leggere il prossimo dato dalla tabella.

Ogni volta che chiami sread(), lui legge il valore a cui punta X, lo assegna a y, e poi incrementa
automaticamente x, spostando il puntatore al valore successivo della tabella di valori, pronto
per la prossima lettura.

Nell’esempio che segue la subroutine music_setup serve a riposizionare questo “segnalibro”
all’inizio del “libro” ogni volta che la canzone finisce.

Attenzione: i dati di sdata si possono solo leggere in sequenza a differenza dell’array data da cui
puoi leggere qualsiasi elemento in qualsiasi momento, usando la sua posizione (indice).

rem Motore Musicale con sdata
set romsize 2k

dim music note duration = a
dim musl b
dim mus2 €

Pagina 229 di 236

dim mus3 = d

rem --- Inizializzazione ---
gosub music setup

main loop

gosub music play
drawscreen
goto main_loop

music play

music note duration = music note duration - 1
if music note duration > 0 then return ; Se la nota non e finita,
rem --- La nota e' finita, leggi la prossima dalla tabella ---

rem Formato dati: Volume, Timbro, Frequenza, Durata

musl = sread(music data) ; Leggi il Volume
rem Se il volume e 255, la canzone e finita. Riavvolgi.
if musl = 255 then gosub music setup : return

mus2 = sread(music data) ; Leggi il Timbro
mus3 = sread(music data) ; Leggi la Frequenza
music note duration = sread(music data) ; Leggi la Durata

rem Imposta 1 registri audio per suonare la nuova nota
AUDVO = musl

AUDCO = mus2
AUDF0 = mus3
return

music_setup

rem —--- TABELLA DATI MUSICALE ---

rem Scegli la variabile x come puntatore alla tabella musicale
rem Vol, Timbro, Freqg, Durata

sdata music_data = x

12, 4, 28, 15 ; Do

12, 4, 25, 15 ; Re

12, 4, 22, 15 ; Mi

12, 4, 28, 30 ; Do (lunga)
0, 0, 0, 15 ; Pausa

12, 4, 28, 15 ; Do

12, 4, 25, 15 ; Re

12, 4, 22, 15 ; Mi

12, 4, 28, 30 ; Do (lunga)

12, 4, 22, 15 ; Mi
12, 4, 21, 15 ; Fa
12, 4, 18, 30 ; Sol (lunga)

Pausa

12, 4, 22, 15 ; Mi

12, 4, 21, 15 ; Fa

12, 4, 18, 30 ; Sol (lunga)
0, 0, 0, 15 ; Pausa

12, 4, 18, 15 ; Sol

12, 4, 16, 15 ; La

12, 4, 18, 15 ; Sol

12, 4, 21, 15 ; Fa

12, 4, 22, 15 ; Mi

12, 4, 28, 30 ; Do (lunga)
0, 0, 0, 15 ; Pausa

12, 4, 18, 15 ; Sol

12, 4, 16, 15 ; La

12, 4, 18, 15 ; Sol

12, 4, 21, 15 ; Fa

12, 4, 22, 15 ; Mi

Pagina 230 di 236

esci

12,
0,

12,
12,
12,
Ol

12,
12,
12,
Ol

255

end

4,
0,

28,
0, 15

30

15
15
30

4, 28,
4, 30,
4, 28,
0, 0, 15

28,
30,
28,
0, 15

4, 15
4, 15
4, 30
r

0

; Do

; Pausa

; Do
; Sol
; Do

; Pausa

; Do
; Sol
; Do

; Pausa

(lunga)

(basso)
(lunga)

(basso)
(lunga)

; Marcatore di fine canzone

music note duration
return

= 1 ; Inizia subito la prima nota

Nota che non ci sono commenti tra sdata e end. Non inserire MAI un commento rem o ; in
una riga di un blocco sdata. Se lo fai, il compilatore interpretera la parola “rem” o il punto e
virgola come un dato numerico, “inquinando” la tua partitura musicale e causando errori
imprevedibili o suoni distorti.

Sentirai “Fra Martino Campanaro” suonare in loop. La subroutine music_play si occupa di tutto:
tiene il tempo, legge i dati usando sread e il puntatore x, e imposta i registri.

Pagina 231 di 236

Appendice E: Cicli e Kernel

Questa appendice ¢ il tuo riferimento tecnico per una delle risorse piu limitate e cruciali della
console: il tempo della CPU. Consultala ogni volta che hai bisogno di ottimizzare il tuo codice,
quando il tuo gioco “trema”. Cosa fare se il gioco é troppo lento? Non devi per forza eliminare
delle funzionalita. Spesso basta distribuire il carico di lavoro in modo piu intelligente.

1.1l Budget di un Frame e la Tabella dei Cicli CPU

Ogni frame dura circa 16.67 millisecondi. Durante questo tempo, la CPU 6507 puo eseguire un
numero limitato di “cicli”. Il tuo codice deve rientrare in questo budget per evitare problemi
grafici.

Divisione del Tempo in un Frame:

Fase Durata (Cicli CPU Scopo Principale
approx.)

VBlank ~1675 cicli Esecuzione del blocco vblank. Ideale per logica
“pesante” (IA complessa).

Disegno (gestito dal Kernel) Il Kernel disegna lo schermo. 1l tuo codice non viene

Visibile eseguito qui.

Overscan ~2700 cicli Esecuzione del main_loop. Ideale per logica “urgente”
(input, movimento).

Regola Fondamentale: La quantita di codice eseguita tra un drawscreen e il successivo deve
richiedere molto meno di 2700 cicli per evitare lo screen roll.

Tabella dei Costi delle Operazioni Comuni

Operazione Cicli | Livello di | Note
CPU Costo
(stima)
Assegnazione (a = 5) 4-6 Molto | Veloce e sicura.
Basso
if (semplice) 8-12 Basso
if collision(...) 14 -18 Basso Leggermente pil costoso.
gosub / return 20-24 | Medio- | Haun piccolo overhead.
Basso
pfscroll up/down ~30 Medio
Moltiplicazione / 50 - Alto Evitare nei loop stretti. Ricordati che puoi
Divisione 100+ moltiplicare e dividere per 2 usando gli operatori
di bit shift << e >> (appendice A)
pfscroll left/right 80 - Molto | Estremamente costoso, da usare con cautela.
100+ Alto

Pagina 232 di 236

2.Sfruttare il “Tempo Morto” — Spostare il Lavoro nel VBlank

Questa e la tecnica di ottimizzazione piu importante. Per capirla, dobbiamo tornare per un istante
a come funziona un vecchio televisore.

Cos’¢ il Vertical Blank (VBlank)? Come abbiamo visto, un televisore disegna un’immagine
(un frame) tracciando righe orizzontali dall’alto verso il basso. Una volta arrivato in fondo, il
pennello elettronico deve “tornare indietro” fino all’angolo in alto a sinistra per iniziare a
disegnare il frame successivo. Durante questo breve viaggio di ritorno, il raggio viene spento.
Questo intervallo di tempo in cui lo schermo ¢ “buio” si chiama Vertical Blank (VBlank).

Anche se dura solo pochi millisecondi, per la velocissima CPU dell’ Atari 2600 questo € un
tempo prezioso. Il kernel standard di Batari Basic ci mette a disposizione circa 1675 cicli CPU
durante il VBIlank, un’enorme quantita di “tempo libero” in cui possiamo eseguire calcoli senza
interferire con il delicato processo di disegno.

L’Overscan e il VBlank in Batari Basic

Il codice del nostro main_loop viene eseguito in un’altra fase, chiamata Overscan, che avviene
subito dopo che il frame é stato disegnato. L 'Overscan € il momento ideale per la logica
“urgente” (leggere il joystick, muovere il giocatore), perché le sue conseguenze saranno visibili
nel frame immediatamente successivo.

Il VBlank, invece, avviene prima del disegno. E quindi perfetto per tutta la logica “pesante” e
non urgente, i cui risultati possono aspettare un frame per essere visualizzati.

CLOCK COUNTS ——>

r.‘. 88 : VERTICAL 1SG:NC"-M‘M _ 3 %
VERTICAL BLANK a7 g
J \\ ///
AN il
. S
=z h o
o ! \\\ / 192
N ACTUALW PICTURE |
% 5) pd \\.\
T m e N
// g \\\“\
- \ Fr
OVERSCAN %

Composizione frame video

Pagina 233 di 236

Come si Usa vblank in Batari Basic? Per eseguire del codice durante il VBIlank, é sufficiente
creare un blocco speciale nel tuo programma, delimitato dall’etichetta vblank (indentata!) e dal
comando return.

main_loop
rem ... qgui va solo la logica "leggera" e urgente ...
drawscreen
goto main loop

vblank

rem Qui va la logica "pesante" e non urgente
gosub update complex enemy ai

gosub calculate scores

return

Il codice nel blocco vblank verra eseguito automaticamente ad ogni frame, subito prima che
drawscreen inizi il suo lavoro. Non devi chiamarlo con gosub; il kernel lo fa per te.
Prova questo codice. Anche se nel main_loop cerchiamo di impostare lo sfondo a verde, il
comando nel vblank lo cambia a rosso perché in realta e eseguito un attimo prima di
drawscreen, cioé prima che il TIA inizi a disegnare.
main_loop

COLUBK = $9E ; Verde

drawscreen
goto main loop

vblank

COLUBK = $44 ; Rosso

return
Poiché il codice nel vblank viene eseguito prima del disegno, qualsiasi modifica alle posizioni
degli oggetti (player0x, score, ecc.) non sara visibile fino al drawscreen successivo. Questo
introduce un frame di ritardo. Per questo motivo, non spostare mai nel vblank la logica che
richiede una risposta immediata, come la lettura del joystick e il movimento del giocatore.
Riserva il vblank per calcoli che possono “permettersi” di essere aggiornati con un piccolo
ritardo, come ’intelligenza artificiale di un nemico lontano o I’aggiornamento di un timer
complesso.

Pagina 234 di 236

Appendice F: Guida ai Colori e Standard TV

Il chip TIA dell’ Atari 2600 puo generare una gamma di colori sorprendentemente ampia per
I’epoca. Conoscere la tavolozza e come 1 valori esadecimali corrispondono ai colori €
fondamentale per dare ai tuoi giochi I’aspetto giusto e creare 1’atmosfera perfetta.

1. Come Funzionano i Colori sull’Atari 2600

Un colore sull’ Atari 2600 ¢ definito da un singolo byte. Questa tabella mostra la tavolozza di 128
colori disponibile sullo standard televisivo NTSC (Nord America, Giappone). | valori sono in
esadecimale. Per trovare un colore, incrocia la la riga della Tonalita (la prima cifra, $X-) con la
colonna della Luminosita (la seconda cifra, $-Y). Ad esempio $1E & un bel giallo brillante.

2. NTSC vs. PAL: Gestire i Diversi Standard Televisivi
I televisori nel mondo non sono tutti uguali. I due standard principali dell’epoca erano NTSC e
PAL, e avevano differenze importanti che influenzano i nostri giochi.

Frequenza di Aggiornamento video:
NTSC: ~60 frame al secondo (Hz). E lo standard usato in Nord America e Giappone.
PAL: ~50 frame al secondo (Hz). E lo standard usato in gran parte d’Europa e Australia.

Tavolozza dei Colori:

NTSC: 128 colori (la tabella sopra).

PAL.: 104 colori, generalmente meno saturi e con tonalita leggermente diverse.

Il compilatore bB per default crea una ROM in formato NTSC. Per creare una versione per il
mercato europeo (PAL), dovresti usare la direttiva set tv pal all’inizio del codice. Per garantire la

Pagina 235 di 236

massima compatibilita e divertimento, il consiglio della community homebrew € quasi unanime:
sviluppa sempre per NTSC. Un gioco NTSC (60Hz) funzionera sulla maggior parte dei sistemi
e televisori PAL moderni (spesso girando a 60Hz), mantenendo la velocita e il gameplay
originali. Al contrario, un gioco PAL (50Hz) risultera ingiocabilmente veloce e con suoni striduli
sui sistemi NTSC. Attieniti allo standard NTSC per raggiungere il pubblico piu vasto e garantire
un’esperienza di gioco coerente.

3. Consigli Pratici per la Scelta dei Colori

La regola piu importante. Assicurati che i tuoi personaggi si distinguano chiaramente dallo
sfondo. Un eroe blu scuro su uno sfondo nero sara quasi invisibile! Scegli colori con luminosita
molto diverse. Per creare ombre o punti luce su un personaggio, non cambiare tonalita. Usa
semplicemente una versione piu scura (luminosita piu bassa) o piu chiara (luminosita piu alta)
dello stesso colore. I colori su un emulatore sono perfetti e brillanti. Su un vecchio televisore a
tubo catodico (CRT), apparivano piu scuri, “impastati” e con leggere sbavature. Quando scegli i
colori, preferisci quelli brillanti e ad alto contrasto per garantire che siano ben visibili anche
sull’hardware reale.

Pagina 236 di 236

