
DEVELOPING A TEXTUAL ADVENTURE FOR THE ATARI
2600 WITH ALIZA (v1.0) – rev. A.6 EN

E-Paper Adventures 2019

Welcome!

Aliza is a freeware portable Windows software to create textual adventure on the ATARI 2600.

In this tutorial document an example of adventure is developed step by step: “The eyeball”. All the needed
resources are at the link: www.epaperadventures.ql m agic.com

The project is 100% free. In case of suggestions or comments, you can write to us at
epaperadventures@gmail.com ...thanks! :)

Images and texts of this tutorial are based on the magazine “INPUT” (Marshall-Cavendish) from 1984/1985. Also,
this work is based on the code present in the book “Making Games for the Atari 2600” by Steven Hugg.

The result of the development with Aliza is an assembly file to use in the 8bitworkshop IDE. But to develop the
adventure a very simple pseudo-basic language is used.

The reccomended tools are Notepad++ and Mozilla Firefox.

In case you would make a small donation, please consider to do it to:

RICOMINCIO DA CANE ONLUS

www.ricominciodacane.it

Thanks from the E-Paper Adventures staff!

Revision A.6 – en - Dec 2022

This project is dedicated to Annalisa <3

http://www.ricominciodacane.it/

Starting a new project!

To start, extract from the downloaded ZIP file the aliza.exe application, for example in a folder on the desktop
named “ALIZA” and execute it.

Go to the File menu and create a new project by New project. Select for example "test" as name. Aliza creates a
sub-folder test with some files. Also, that folder is set as project folder.

These are the files in test:

Every projets contains a default adventure pseudo-basic code (code.alz) ready to be compiled. Just to test, go in
Project menu and choose Generate assembly:

Aliza generates the code.asm file based on the content of the code.alz file.

Open code.asm with Notepad++. It contains assembly code. Copy it, go on:

https://8bitworkshop.com/

Click on:

One the web page is loaded, click on top-left icon and select ATARI 2600 as platform:

Then, select “New project”, digit “test” and enter.

https://8bitworkshop.com/

Cancel all the code automatically generated and paste the code copied from code.asm:

The assembly will be executed in the right window (atari 2600 emulator).

Note: please read appendix A (bugs found December 2022)

Here is how to play:

– left or right cursors (player 1 joy left or right) to change the VERB: GO, EXAMINE,TAKE, USE, PUSH,
PULL, DROP

– up or down cursors (joy up or down) to select a text line (yellow) containing something to act on

– space (joy fire) to execute the action (for example: EXAMINE DARK FOREST)

– use the option “GAME RESET” to restart the game

Basically, the game screen presents:

– the current room description

– possible directions (north, south, east, west)

– object present in the room (“floating” objects)

– inventory

– the verb selected (in white)

If the text exceed the first screen, going down a second screen is presented.

Actions can generate as result a message, for example “YOU CANNOT”. In this case you can only hit space (fire)
to continue (if possible).

To create a binary file to use in other emulators, there is a “download ROM image” option in the site:

The file reference.txt created in the folder contains a short reference to write the code of your adventure in
code.alz

Note: an updated version of the reference file is available in appendix B

The eyeball

This adventure starts with the player in trouble due to a lot of debts with the revenue authorities. The only solution
is to find the “eyeball” gem in the far hidden city.

Unfortunately, the tax-man is chasing the player. If the tax-man captures the player, he goes in prison and the
adventure ends.

The player needs various objects to win. For example, a lamp is needed to exit from the dark room. Other object
are traps. For example, the brick makes the player sink.

The eyeball is inside a bag full of marbles. To win, the player should be in the trone room, be seated and pull the
chain while wearing the gloves. Otherwise the player will be electrocuted or splashed out (!)

Here is the world of the adventure, composed by 12 rooms and several objects.

Every room is indexed by a number.

The code of Aliza

ATARI standard games uses 4096 bytes as ROM (code) and 128 bytes of RAM memory. Aliza game engine (and
graphic kernel) uses 2446 bytes of ROM and 119 RAM bytes, so only 1650 bytes are available for our texts and
code (the adventure logic) and only 9 integer variable (byte) from 0 to 255 in RAM.

Any adventure developed have these constraints:

– max 14 rooms

– max 15 floating objects, eventually takeable

– max 16 indexes to attach to text lines of the rooms descriptions

– 8 verbs

– 32 free messages

Texts can contain only these characters:

QWERTYUIOPASDFGHJKLZXCVBNM ,.;:!'-

Note: see appendix A for bug reported for texts

Text lines (and also floating objects names) are always of 12 characters.

There are no save options, when the adventures ends (the player win or fail), the game has to be reset.

Note: in some cases the Aliza compiler is able to optimize spaces in texts, but basically every character uses 1 byte
of ROM. For details on how the spaces optimization works, see appendix D

Now, copy the “eyeball” folder (in the zip downloaded) in the “ALIZA” folder created on the desktop.

Open code.alz with Notepad++ :

; ALIZA

; by E-Paper Adventures 2018 epaperadventures@gmail.com

; the eyeball - story based on marshall-cavendish INPUT computer course

; In the face of financial

; collapse you have fled

; the country. The solution

; to your problems lies

; in finding the fabled

; jewelled eyeball of

; the purple icon and passing

; the final initiative test.

; Avoid the tax inspector

; at all cost.

[COLOR1]

; text color

202

[COLOR2]

; selected row color

255

[COLOR3]

; player command color

15

[CODESIZE]

; code size

650

[START]

; initial room

07

[INVENTORY]

; max number of objects in inventory

3

The lines that starts with ; are comments lines, not considered to generate the assembly code.

Below [COLOR...] sections the colors (NTSC, decimal number) to use in the game are defined:

– color 1: text (default: green)

– color 2: text line selected (default: yellow)

– color 3: verb color in last line (default: white)

The color values are here:

http://www.randomterrain.com/atari-2600-memories-tia-color-charts.html

Below [CODESIZE] the number of bytes for the adventure code (logic) is written. In the example they are 650,
this means that 1650-650 = 1000 bytes are reserved for the texts.

Below [START] there is the start room index (from 01 to 14)

Below [INVENTORY] there is the max number of items that the player can carry. Should be 8 at maximum.

Below [DEFAULTSTRINGS] there are the base messages, used by the game engine. Note: number of lines used
for these messages must not be changed.

[DEFAULTSTRINGS]

;128

"IT DOES'NT "

"SEEM TO WORK"

;129

http://www.randomterrain.com/atari-2600-memories-tia-color-charts.html

"NOTHING "

"INTERESTING "

;130

"YOU CANNOT "

;131

"YOU HAVE TOO"

"MANY THINGS "

;132

"YOU HAVE: "

;133

"YOU SEE: "

;134

"NOTHING "

;135

"DONE! "

These messages could be used also in the code of the adventure as result of a player action (see show command).

Then we have the verbs and the directions names:

;-------------

; verbs

;-------------

; 1

" GO "

; 2

" EXAMINE "

; 3

" TAKE "

; 4

" USE "

; 5

" OPEN "

; 6

" PUSH "

; 7

" PULL "

; 8

" DROP "

;-------------

" CONTINUE..."

;-------------

;exits

" - NORTH "

" - SOUTH "

" - EAST "

" - WEST "

Verbs 5,6,7 can be changed. The others should be kept as they are.

“CONTINUE” is the text displayed after any message and require to hit fire button (or space in emulator).

Then there is for each room, the possible exits related to available directions. A number different by 00 is the
destination room index.

[EXITS]

; room index:north room,south room,east room,west room

01:00,04,00,00

02:00,00,03,00

03:00,06,00,02

04:01,08,05,00

05:00,00,00,00

06:03,00,07,00

07:00,00,08,06

08:04,11,09,07

09:05,00,10,08

10:00,12,00,09

11:08,00,00,00

12:10,00,00,00

; not used

13:00,00,00,00

14:00,00,00,00

All the 14 rooms must be specified, even if not used.

In the game GO verb is used in combination with these directions. But GO can be used also with text lines in room
description to add other possible directions.

Then we have the floating objects. These are the ones that eventually appear after room description or in the
inventory.

[OBJECTS]

01:01,Y,"A LITTLE BAG"

02:06,Y,"A RED BRICK "

03:00,Y,"SOME GLOVES "

04:00,Y,"AN OLD GUN "

05:00,Y,"THE EYEBALL "

06:00,Y,"SOME MARBLES"

07:00,Y,"A LAMP "

; not used

08:00,N,"............"

09:00,N,"THE TAX MAN!"

; not used

10:00,N,"............"

11:00,N,"A BODY "

12:00,N,"A DOOR:SOUTH"

13:00,N,"A DOOR:WEST "

14:12,N,"A CHAIN "

; not used

15:00,N,"............"

Always specify all 15 objects.

After index, there is the room where the object is (00=out of game, 15=in inventory), then if object is takeable (Y
or N) and then the name of the object.

Then we have [TEXT] section that contains the free messages, from 01 to 32, that can be shown by show
command in the code.

[TEXT]

01

"IT IS FULL "

"OF MARBLES "

02

"IT IS EMPTY "

03

"THE CHAIN IS"

"HANGING "

04

"ONE OF THEM "

"IS THE "

"JEWELLED "

"EYEBALL! "

05

"THE TAX "

"INSPECTOR "

"SUDDENLY "

"APPEARS! "

06

"AS YOU DID "

"NOT HAVE "

"MONEY, HE "

"LOCKS YOU "

"IN A DEEP "

"DUNGEON... "

07

"BANG! YOU "

"KILLED HIM! "

08

"WHAT A SHAME"

"YOU DRAWNED!"

09

"YOU FIND A "

"GUN ON THE "

"OTHER SIDE "

"OF THE RIVER"

10

"YOU GET WET "

11

"THE MARBLES "

"ROLL OVER "

"THE FLOOR "

12

"OH NO! HE "

"DODGED IT! "

13

"YOU GET "

"FLUSHED DOWN"

"THE TOILET "

"AND GO ROUND"

"THE BEND... "

14

"WELL DONE! "

"YOU HAVE "

"COMPLETED "

"THE GAME! "

15

"NOW YOU FEEL"

"LIKE A KING "

16

"BZZZZZ! YOU "

"GET SCHOKED."

17

"YOU FIND "

"SOMETHING..."

18

"THERE IS A "

"WRITING ON "

"THE WALL: "

"ALL YOU NEED"

"IS GLOVES "

19

"AAARGH!!! "

"YOU GET "

"PETRIFIED! "

20

"THE NIGHT IS"

"COMING... "

"HURRY UP! "

21

"IT IS TOO "

"DARK TO "

"CONTINUE... "

"YOU FAILED. "

Messages indexes must be progressive. Maximum lines for message is 8. As usual lines are always of 12
characters.

The next section [ROOMSTEXT] has the rooms descriptions (max 8 lines). Room indexes should be progressive,
max 14. Some rooms (at the end of the list) can be not present:

[ROOMSTEXT]

01

"YOU ARE OUT-"

"SIDE A LARGE"

"BUILDING ",18

02

"YOU ARE BY A"

"FAST FLOWING"

"RIVER ",17

03

"YOU ARE IN A"

"PETRIFIED "

"FOREST "

04

"YOU ARE IN A"

"DUSTY ROOM "

05

"YOU ARE IN A"

"DARK ROOM "

06

"YOU ARE ON A"

"MUDDY PATH "

07

"YOU ARE BY "

"THE GATE OF "

"THE HIDDEN "

"CITY "

08

"YOU ARE IN "

"THE ENTRANCE"

"HALL "

09

"YOU ARE IN "

"A COURTYARD "

10

"YOU ARE IN "

"THE GARDEN ",19

11

"YOU ARE IN "

"THE CUPBOARD",20

12

"YOU ARE IN "

"THE THRONE ",21

"ROOM "

Any line could “contain” an object to use to perform actions. We just have to put a “,” and an index from 17 to 32.

"BUILDING ",18

So we can intercept later in code the action “EXAMINE” + line “BUILDING” for example.

If we use “>” instead of “,” we indicates that if the player select GO verb plus this line, the player will be
automatically moved to the room of the index after “>”

02

"YOU ARE ON A"

"MUDDY PATH. "

"THERE IS A "

"LITTLE HUT ">03

If the player select “LITTLE HUT” and GO, it will be moved to room 3.

Some notes about the possible verbs.

GO: is the only verb usable with the directions NORTH, SOUTH, EAST, WEST created by the EXITS section.
The GO + direction action cannot be intercepted in ACTIONS section. If we want to manage manually an exit, we
have to put it as floating object or as object related to a text line.

EXAMINE: if not intercepted, the engine will show “NOTHING INTERESTING” message.

TAKE/DROP: give the ability to manage the inventory automatically for the floating objects specified as takeable.
Also the engine shows “YOU HAVE TOO MANY THINGS” in case the player has already the max number of
items allowed. Or it shows “YOU CANNOT” in case the action is not permitted.

USE: if not intercepted, the engine shows “IT DOESN'T SEEM TO WORK”

PUSH, PULL,OPEN:if not intercepted, the engine shows “YOU CANNOT”

Before to look at [ACTIONS] and [CONDITIONS], where the adventure logic is coded, let's try to generate the
assembly of “eyeball”.

As it is displayed, 172 bytes are still available for the code and 44 bytes are still available for texts.

Note: in case you need a bit of more ROM to complete your adventure, you can use the trick described in
appendix C to obtain 60 extra bytes.

Variables

These are the variables available for managing the adventure in the code:

POS: current position (room) of player

P01..P15: position of object of index 01..15. 00 = out of game, 15 = in inventory

V01..V09: free variable, from 0 to 255, at the game start all are set to 0

In “eyeball”, variables have this meaning:

; VARIABLES

; V01 = number of actions done

; V02 = is 1 if bag already examined

; V03 = is 1 if marbles already examined

; V04 = number of actions done in the forest

; V05 = is 1 if inspector already appeared

; V06 = is 1 if garden already examined

; V07 = is 1 if cupboard already moved

; V08 = is 1 if player is sitting on throne

; V09 = is 1 if player has seen the writings

V01..V09 can be managed as at bit level (8 bit for variable), but the related commands are very expensive in term
of ROM code size and should be avoided.

ACTIONS and CONDITIONS code

These sections contain the code that implement the logic of our adventure.

Every time an action is performed by player, the engine execute the ACTION code. If the action is not intercepted
in that code, the game engine manage automatically the action and shows the correct message (DONE, YOU
CANNOT, ...)

After any action, and after evaluating the ACTION code, the CONDITIONS code is executed. This part of the
code is used to count the actions done to make something happen or to simply display a message.

These are the instructions usable in the code, spaces and number of digits must be respected. Also, Aliza is case
sensitive.

done

exit from section ACTIONS or CONDITIONS (the next instruction of sections are skipped)

show XXX

XXX = 001-032 or 128-135 (message index)

show the message. In section ACTIONS also force exiting from the section

end XXX

XXX = 001-032 or 128-135 (message index)

Show message and end the game (reset required). Note: if used in CONDITIONS, it has priority respect
any message of a show instruction in ACTIONS

XXX=YYY

XXX is any variable

YYY is any variable or a number from 000 to 255

 Assign YYY to XXX

For example:

POS=002

move player to room 2.

XXX++

Increment variable XXX by 1.

XXX--

Decrement variable XXX by 1.

XXX&=YYY

 Assign (XXX and YYY) to XXX.

For example, if V01 is 3 (00000011)

V01&=002

makes V01 = (00000011) & (00000010) that is (00000010) = 2

XXX|=YYY

 Assign (XXX or YYY) to XXX.

For example, if V01 is 3 (00000011)

V01|=004

makes V01 = (00000011) | (00000100) that is (00000111) = 7

if [test1]

&& [test2] (optional)

...

&& [testN] (optional)

 [...]

end if

[test1]...[testN] are comparison expressions that must be all true.

[…] is the code executed if all expressions are true (can contain others IF blocks)

 [test?] can be:

 XXX=YYY → XXX equal to YYY

 XXX<YYY → XXX less than YYY

 XXX>=YYY → XXX major than YYY

 XXX<>YYY → XXX not equal to YYY

 XXX&YYY=ZZZ → XXX and YYY equal to ZZZ (binary and)

 with XXX variable and YYY,ZZZ variables or numbers from 000 to 255

For example:

if POS=002

 V01++

end if

if player is in room 2, increment V01 by 1.

if POS=002

 && V02<005

 V01++

end if

if player is in room 2 and V02 is less than 005, increment V01 by 1

The last command can be used only in ACTION to intercept the player actions.

action X,YY

 [...]

end action

X = verb index (1 = GO, 2 = EXAMINE, ...)

YY = object index 01..15 o 17..32

 In case action is intercepted, code in […] is executed.

No action command can be nested in action command.

 […] can contain IF blocks.

 To intercept any action made with a certain verb, use YY = 00

 To intercept any action made with a certain object, use X = 0

ACTIONS and CONDITIONS

Now lets analyze CONDITIONS code of “eyeball”.

[CONDITIONS]

; after any action, increment V01 by 1 till 50

if V01<050

 V01++

end if

; at 25th action, warn player that night is coming (not in dark room)

if V01=025

&& POS<>005

 show 020

end if

; at 50th action, end game (not in dark room)

if V01=050

&& POS<>005

 end 021

end if

The first IF block checks if V01, used to count number of actions made by player, is less than 50. If so, V01 is
incremented by 1.

The second IF block checks if V01 is equal to 25 and also if player is not in room 5: in that case message 20 is
shown.

The third IF, in case V01 is 50 and the position is not room 5, ends the game with message 21.

; the dark room:

; if player has the lamp or the lamp is in the room

; show two object (12,13) as room exits

; south (go to 9), east (go to 4)

P12=000

P13=000

if P07=015

 P12=005

 P13=005

end if

if P07=005

 P12=005

 P13=005

end if

This block set to 0 (out of game) the floating objects 12 e 13 that are addtional exits that the player can see only if
he has the lamp or the lamp is in the room 5. In that case the position of the exits become room 5.

; the forest

; if you stay for 3 moves, you get petrified

if POS=003

 V04++

 if V04=003

 end 019

 end if

end if

if POS<>003

 V04=000

end if

If player is in the forest (room 3) and stay for 3 actions, it will be petrified. The count is made with variable V04.
When the player is in another room, the counter is reset to 0.

; inspector: if is appeared and still alive, after 1 move game over

if V05=001

&& P09=010

 end 006

end if

; inspector: appears in the garden

if V05=000

&& POS=010

 P09=010

 V05=001

 show 005

end if

If the tax-man (object 9) is already apperead (V05=1) and he is in room 10, the games is ended with message 6.

This block is related to the enemy of the player, the tax-man. The first IF checks if the taxman is already appeared
(V05=1) and if its position is room 10(garden) and in that case it means that the action made by the player was
not the “correct one” (USE GUN). So the game ends with message 6.

The second IF checks if the tax-man is not appeared (V05=0) and if the position of the player is the garden and in
that case the tax-man is located in the same room, V05 is set to 1 and message 5 is shown.

; if not in the throne room, clear V08

if POS<>012

 V08=000

end if

This IF verifies if the player is in a room different from the throne (12) and in that case set V08 to 0. V08 is set to
1 when the player seats on the throne (see below)

Now let's look at the ACTIONS section, where we intercept all the player actions we need to manage manually.

[ACTIONS]

; exits of dark room

action 1,12

 POS=009

 done

end action

action 1,13

 POS=004

 done

end action

First action is GO + object 12 (“A DOOR:SOUTH") that is an additional exit in the dark room (5) if the player has
the lamp. In case the player is moved to room 9 and the engine is forced to exit from the section ACTIONS (it has
no sense to evaluate the other actions).

Then there is GO + object 13 (“A DOOR:WEST") that is the other additional exit, that moves the player to room
4.

; swimming in the river

action 1,17

 ; if player has the brick, he dies

 if P02=015

 end 008

 end if

 ; if first time (gun out of game), gun appears

 if P04=000

 P04=002

 show 009

 end if

 ; otherwise just a message

 show 010

end action

First if GO + RIVER and if player has the brick (P02=15) then the game ends with the message 8. Otherwise if the
gun (object 4) is out of the game, then it appears in the room and message 9 is displayed. If gun was already
appeared, just show message 10.

; writings on the building

action 2,18

 V09=001

 show 018

end action

If building (object 18) is examined (in room 1) then V09 is set t 1 and message 18 is shown.

; examine bag

action 2,01

 if V02=000

 show 001

 end if

 show 002

end action

If marbles bag is examined, and bag is not empty (V02=0) then message 1 is shown otherwise 2.

; examine garden

action 2,19

 if V06=000

 && V09=001

 V06=001

 P03=POS

 show 017

 end if

end action

If EXAMINE GARDEN (object 19) and it is the first time player examine it (V06=0) and player has read the
writing on the building (room 1) then V06 is set to 1 and object 3(gloves) are positioned is the current player
room. Then message 17 is shown.

Note that show is always the last command of the inner if code block, because always causes exiting from the
ACTIONS section!

; open bag

action 5,01

 if V02=000

 V02=001

 P06=P01

 show 011

 end if

end action

If player opens the bag, and the bag is not already open (V02=0), V02 is set to 1, and the marbles are positioned in
same room of the bag and then message 11 is shown.

; examine marbles

action 2,06

 if V03=000

 V03=001

 P05=POS

 show 004

 end if

end action

If marbles are examinated, for the first time (V03=0) then V03 is set to 1 and the gem appears and the message 4
is shown.

; examine chain

action 2,14

 show 003

end action

EXAMINE CHAIN → show message 3

; push cupboard

action 6,20

 if V07=000

 V07=001

 P07=POS

 show 017

 end if

end action

If PUSH THE CUPBOARD for the first time (V07=0) then V07 is set to 1 and the lamp appears in the same room
of the player. Then message 17 is shown.

; use throne

action 4,21

 if V08=000

 V08=001

 show 015

 end if

end action

USE THRONE, if player is not seat (V08=0), makes the player seat (V08=1) and message 15 is shown.

; use brick (when inspector)

action 4,02

 if P09=POS

 show 012

 end if

end action

; use gun (when inspector)

action 4,04

 if P09=POS

 P09=000

 P11=POS

 show 007

 end if

end action

If player is in the same room of tax-man, USE BRICK shows the message 12. USE GUN kills the tax-man, that
will be put out of play (P09=000) and its body(11) appears in the same room of the player. Message 7 is shown.

; pull chain

action 7,14

 if P03=015

 && P05=015

 && V08=001

 end 014

 end if

 if P03<>015

 end 016

 end if

 end 013

end action

When player pulls the chain:

– if player has the gem, the gloves and is on the trone, the game ends and the player win

– if player hasn't the gloves it is electrocuted, in the other cases is splashed out

Debug

To debug the adventure, starting the game in a certain condition, the only way is to write in CONDITIONS
something like this:

if V09=000

 POS=???

 P01=???

 ...

 V01=...

 ...

 V09=001

 done

end if

So doing, after any first action, the player will be moved in a certain location with certain variables set as we need
to test certain parts of the game, at the cost of variable V09.

Here are some errors thar can be signalled during assembly generation.

Invalid character < ... >

Invalid character used in code.alz

Invalid or missing [...] section

Missing section in code.alz

File code.alz not found!

File code.alz not found

Invalid code size

Invalid code size (ACTIONS + CONDITIONS)

out of ROM memory

Text or code exceed ROM limits

invalid string: ...

Invalid text line (not 12 chars?)

Syntax error: ...

Invalid command used in ACTIONS or CONDITIONS

Invalid text sequence: ...

A message index is probably wrong or skipped

Too many characters.

Out of the ROM dedicated to texts

Too many strings.

Too lines for a message

Syntax error: unclosed action ...

“action” command not closed with “end action”

Syntax error: action not open ...

“end action” without “action”

Syntax error: if not open ...

“end if” without “if”

Syntax error: unclosed if

“if” without “end if”

Unknown variable: …

invalid variabile

Appendix A: Bugs of version 1.0

(1) There is a bugged line in the assembly code generated by Aliza in the code.asm file. It is needed to replace a
cpy instruction as below. To find it, just search the cpy #8 after an iny instruction. Change:

 to

(2) The color of the selected line is always yellow (value after section COLOR2 has no effect). To solve this:

– Search an instruction lda #255 that is in a code block starting with sta WSYNC

– modify the 255 with the color value you want for the text selected color

(3) The first line of a message displayed with show or end is in COLOR2 color instead of COLOR1. In case you
want to have all the message lines in COLOR1, you need to change that lda #1 line in the asm code (look for
TIMER_SETUP 32, the line is just before). Change:

to:

Warning: This change causes that the bytes available for your code and text are no longer 1650 but 1647. This
means that when you have compiled your code, you should pay attention to see that at least 3 bytes are still free
for the text, otherwise your asm will exceed 4K.

In case you want to avoid this problem, you can do a little opitimazion of some lines of code (again just before
TIMER_SETUP 32) . You need to comment 4 lines and add 3 instructions as in the following figure. Doing this,
you will have again 1650 bytes available.

(4) The character semicolon “;” cannot be used in any text string due to a bug in the compiler.

Appendix B: last version of quick reference file
ALIZA reference file v1.4

by E-Paper Adventures 2022 epaperadventures@gmail.com http://www.epaperadventures.qlmagic.com/

* TEXT *

All the text strings must be of 12 characters.

Texts can only contain these characters:

QWERTYUIOPASDFGHJKLZXCVBNM ,.;:!'-

You can add a comment starting line with ;

* VARIABLES *

These are the variables available in CONDITIONS and ACTIONS sections

V01..V09

 free variables, values from 0 to 255

P01..P15

 position of floating object

 0 = out of game

 1..14 = in room 1..14

 15 = taken

POS

 position of player (room) 1..14

* SECTIONS COMMANDS *

This is the list of commands that you can use

in sections ACTIONS and CONDITIONS.

done

 to exit from CONDITIONS or ACTIONS section

show XXX

 XXX = 001-032 or 128-135

 show message of index XXX and if in ACTIONS exit from section

end XXX

 XXX = 001-032 or 128-135

 show message of index XXX and end the game waiting for reset

XXX=YYY

 XXX is a variable

 YYY is a variable or a number from 000 to 255

 Assign value YYY to XXX

XXX++

 Increment by 1 the variable XXX. Note: if XXX=255, after XXX++ the value in XXX will be 0

XXX--

 Decrement by 1 the variable XXX. Note: if XXX=0, after XXX-- the value in XXX will be 255

XXX&=YYY

 XXX is a variable

 YYY is a variable or a number from 000 to 255

 Assign to XXX the value given by (XXX & YYY) with & the binary AND

XXX|=YYY

 XXX is a variable

 YYY is a variable or a number from 000 to 255

 Assign to XXX the value given by (XXX | YYY) with | the binary OR

if [test1]

&& [test2] (optional)

...

&& [testN] (optional)

 [...]

end if

 if [test1], [test2] ... [testN] are all true, [...] is executed.

 Note: [...] can contain nested if ... end if commands

 [test?] could be:

 XXX=YYY ---> XXX equal to YYY

 XXX<YYY ---> XXX less than YYY

 XXX>=YYY ---> XXX equal or greater than YYY

 XXX<>YYY ---> XXX not equal to YYY

 XXX&YYY=ZZZ ---> (& is binary AND) XXX AND YYY equal to ZZZ

 with XXX a variable and YYY,ZZZ a variable or a number from 000 to 255

action X,YY

 [...]

end action

 X = index of the selected action 1..8

 YY = object selected 01..15 or 17..32

 Execute [...] if player does the action

 Note: cannot contain nested action ... end action

 Note: use it only in ACTIONS section

 Note: if X = 0, you capture any action on object YY

 Note: if YY = 00, you capture any action of index X

Appendix C: adding 60 bytes to the available ROM

In case you are out of memory and you need extra bytes for your adventure, you can do this trick to obtain 60
extra bytes:

1) Individuate two messages of your TEXT section; the first must be made of 2 lines, the second of 3 lines.
Let's say for example that their are messages 4 and 21.

2) Change the messages 128-135 of DEFAULTSTRINGS section to these:

;128

"XXXXXXXXXXXX"

"XXXXXXXXXXXX"

;129

"XXXXXXXXXXXX"

"XXXXXXXXXXXX"

"XXXXXXXXXXXX"

;130

"YOU CANNOT. "

;131

"TOO THINGS. "

;132

"YOU HAVE: "

;133

"YOU SEE: "

;134

"NOTHING. "

;135

"DONE! "

and replace message 128 lines with the first selected message (4) and message 129 with the second
selected message (21)

3) In your CONDITIONS and ACTIONS section, replace all show and end commands with 128 and 129 to
130 and 134 respectively. For example, show 128 becomes show 130

4) In your CONDITIONS and ACTIONS section, replace all show and end commands with 004 and 021 to
128 and 129 respectively. For example, show 021 becomes show 129

5) In TEXT section, copy your last two messages, for example 25 and 26, to the position 4 and 21. Then
delete messages 25 and 26. In your CONDITIONS and ACTIONS section, replace all show and end
commands with 025 and 026 to 004 and 021 respectively. For example, show 025 becomes show 004

6) Generate the asm file, and in the asm code replace these lines in the red box at the end of the code:

Pay attention to replace all the numbers correctly.

The new code is redirecting the default messages for examine and use verbs to “NOTHING.” and “YOU
CANNOT.”, freeing the messages 128 and 129 for us. Being in total 5 lines of 12 characters, this
means 60 bytes more for our code or text.

Note that all default messages (130-135) must be made by only 1 line.

Appendix D: text spaces optimization

Aliza makes some optimization on the text lines in order to reduce the bytes used.

A lines normally occupies 12 bytes.

In the following cases, only for lines in TEXT section, the number of used bytes is different:

– if the last 2 characters of the line are spaces, the number of used bytes will be 10

– if the last 4 characters of the line are spaces, the number of used bytes will be 8

– if the last 6 characters of the line are spaces, the number of used bytes will be 6

For example:

"XXXXXXXXXXX "

(11 X + 1 space) uses 12 bytes

"XXXXXXXXXX "

(10 X + 2 space) uses 10 bytes

"XXXXXXX "

(7 X + 5 spaces) uses 8 bytes

"XXXXXX "

(6 X + 6 spaces) uses 6 bytes

"XXX "

(3 X + 9 spaces) uses 6 bytes

